CorrelationMatrix

Fra mn/fys/epf
Hopp til: navigasjon, søk

The covariance matrix is
[math]C_{ij} = \lt (x_i-\bar{x_i})(x_j-\bar{x_j})\gt [/math].
Suppose [math]\delta_1,\ \delta_2,\ \delta_3[/math] are three independent sources of normally-distributed unit fluctuations (with < δi > = 0 and < δi * δj > = δi'jand where δij is the kronikker delta function (1 for i = j and zero for [math]i\neq j[/math]).


Pseudo-measurements of (x1,x2) can be generated from the expressions (x1,x2) = (x10 + α * δ1 + β * δ2,x20 + γ * δ3 + λ * δ2).

Expanding the covariance matrix one finds [math]C_{ij}=\lt x_i*x_j\gt -\bar{x_i}\bar{x_j}\lt math\gt .\lt br\gt Using the properties of \lt math\gt \lt \delta_i*\delta_j\gt [/math] above and [math]\lt x_i\gt =\bar{x_i}[/math], one finds <x_1*x_2> = x_{10}*x_{20}+\beta*\lambda</math> so that C12 = C21 = β * λ. Similar substitution for Ci'jgives for the diagonal matrix elements [math]C_{11}=x_{10}^2+\alpha^2+\beta^2-x_{10}^2[/math]
and
[math]C_{22}=x_{20}^2+\gamma^2+\lambda^2-x_{10}^2[/math]. so that C=
α2 + β2 β * λ
[math]\beta*\lambda[/math] [math]\gamma^2+\lambda^2[/math]