

The Trusted Platform Module (TPM)

Olav Ligaarden Nasjonal sikkerhetsmyndighet

AFSecurity Seminar, University of Oslo, 2014-01-29

Outline

- TPM and trusted computing
- The TPM in more detail
- Examples: The TPM and Microsoft Windows
- Conclusion
- Further reading

Outline

- TPM and trusted computing
 - Trusted platform module
 - Trusted computing
 - The grand vision of trusted computing
- The TPM in more detail
- Examples: The TPM and Microsoft Windows
- Conclusion
- Further reading

Trusted platform module

- A tamper-resistant security chip that is soldered to the computer's motherboard
 - Perform cryptographic operations and protects small amounts of sensitive data
 - A passive device
 - Manufacturers include Infineon, Atmel, Broadcom, etc.
 - Inexpensive (< \$1)</p>
- Specification
 - Made by the Trusted Computing Group (TCG)
 - The current version is 1.2

4/32

A draft of the TPM 2.0 specification is in review

Trusted computing

- Generally refers to systems that use hardware to support security in software
 - TPM, CPUs with secure modes, etc.
- Also covers infrastructure relying on the above
 - Applications, network access control (NAC), secure storage devices, etc.
- The main goal is to build trust in entire system for some purpose
 - The TPM plays an important role here

The grand vision of trusted computing

- Before logging in, I know that the computer is good
- Computers that are not up-to-date are routed to a DMZ to perform updates before they are allowed to connect to the network
- Confirm exactly which machines we are talking to and whether they run good software before providing them with sensitive data
- Use hardware to protect all of my data, including secret keys, from being stolen and transmitted over the network

Outline

- TPM and trusted computing
- The TPM in more detail
 - What is in a TPM?
 - What TPMs provide
 - Debunking of myths
 - What is it good for?
- Examples: The TPM and Microsoft Windows
- Conclusion
- Further Reading

What is in a TPM?

What TPMs provide

- Roots of trust
- Platform configuration registers (PCRs)
- RSA keys
 - Root keys
 - Non-root keys
- ... and more!

Roots of trust

Basic features of a trusted system

- The thing that you base all other trust on
- Trusted inherently
 - Must be trusted because misbehavior may not be detected
 - Technical evaluation based on the specification by competent experts

Roots of trust cont.

- Root of trust for measurement (RTM)
 - Capable of making inherently reliable integrity measurements
 - Root of the chain of transitive trust
- Root of trust for storage (RTS)
 - Capable of storing integrity measurements in a safe and reliable way
 - Capable of protecting secrets
 - Not all of them are protected directly
- Root of trust for reporting (RTR)
 - Capable of reliably reporting information held by the RTS

Platform configuration registers

- Series of 20-byte registers (size of a SHA-1 hash)
- Most modern TPMs have 24 registers
- Used to store system measurements
 - Measurements may also be stored in Stored Measurement Log (SML)
- Highly constrained behavior
 - Reset to known value at boot
 - Data can only be stored with Extend operation

Platform Configuration Registers cont.

- Use Extend operation to store data in a PCR
 - Current PCR value: Y (SHA-1 hash)
 - New measurement: X (Data ≤ 20 byte / SHA-1 hash of this data)
 - New PCR value: hash(Y | | X) = Z
 - hash(Y || X) ≠ hash(X || Y)
- Perform the same hash chain to verify PCR values
- Computationally infeasible to forge (must break SHA-1)
 - Current PCR value is N, while desired value is M
 - hash(N | | X) = M; violates the one-way assumption

TPM root keys

- Endorsement Key (EK): The key that the TPM uses in its role as Root of Trust for Reporting
 - Unique platform identity
 - Trust in all other keys comes down to trust in the EK
 - Should be generated in TPM during manufacture time in a secure environment
- Storage Root Key (SRK): The key that the TPM uses in its role as Root of Trust for Storage
 - Used to protect other keys and data via encryption
- These keys <u>never</u> leave the TPM

TPM non-root keys

- All TPM keys are RSA keys, but have specialized roles
 - Encryption/Decryption: Storage, Sealing, Binding
 - Signing/Reporting: Identity, Signing
 - Identity keys are better known as Attestation Identity Keys (AIKs)
- Stored in "blobs" outside the TPM
 - Private half is encrypted by Storage Root Key (or other key)
 - Integrity protection on other data
- Loaded into the TPM when needed

What is the TPM good for?

- Machine authentication
- Machine attestation
- Data protection

Machine Authentication

- Use TPM to identify a machine
 - TPM is soldered to the motherboard
 - Keys are cryptographically bound to a particular TPM
- Signing-based authentication
 - This data passed through machine X
- Encryption-based authentication
 - Only machine X can read this data
- One of the simplest TPM applications

Machine Attestation

Attestation: the presentation of verifiable evidence about

machine state to a remote party

- Primary tool is quote
 - Contains the verifiable evidence in the form of a signed report of a subset of PCRs
- Remote verifier check the state of the machine based on signed reports from the TPM
- Have the potential of checking whether a piece of software is trustworthy

Quotes

- Nonce for freshness, provided by verifier
 - A freshly generated random value
- Hash of a subset of PCR values
- Should be signed using an Attestation Identity Key (AIK)

Using quotes

- Attester decides
 - Willing to give this state info to verifier?
- Verifier decides
 - Is quote valid and from a legitimate TPM?
 - Is nonce the same as I provided? If fresh, proves quote is current
 - Are PCRs in a state I approve of?

Attestation is not easy

- PCR values are very fragile
 - Any change in measurement value will change the hash unpredictably!
 - Did it update the date or add a rootkit?
 - Things start in different order and there are timing conditions
- Extremely difficult to predict PCR values
 - Holy grail of measurement: golden values reflecting good/bad state
- Still useful
 - Is my machine the same as yesterday?

Debunking of Myths

- The TPM controls boot
 - Passive device
 - Cannot stop the machine from booting, but can protect data
- The TPM is tamper-proof
 - Tamper-resistant ... for consumer products
 - Tremendously good for their cost!
 - Cost < \$1
 - Cost researchers > \$100,000 to break
 - Not designed with government tamper-resistance standards in mind

Debunking of Myths cont.

- The TPM works for Disney/Microsoft/etc
 - Originally pitched for DRM use
 - The TPM belongs to the owner of the machine, which has full control
 - One reason why TPMs have so many privacy features
- You can delegate all crypto to the TPM
 - Highly constrained cryptographic functionality
 - Prevents many attacks
 - Too slow!
 - Cost is priority, not performance

Outline

- TPM and trusted computing
- The TPM in more detail
- Examples: The TPM and Microsoft Windows
 - TPM, BitLocker, Windows 7, and conventional BIOS
 - Measurement of components
 - Decryption of BitLocker encrypted data
 - Multifactor authentication
 - The Evil Maid
 - TPM, BitLocker, Windows 8.X, and UEFI
 - Secured Boot
 - Other uses of the TPM on Windows 8.X

24 / 32

- Conclusion
- Further Reading

Measurement of components

Decryption of BitLocker encrypted data

Multifactor authentication

- TPM only
 - Retrieve Full Volume Encryption Key from memory after boot
- TPM + PIN or Enhanced PIN
 - Volume Master Key is sealed by both TPM and PIN
 - Anti-hammering technology to prevent dictionary attacks
- TPM + USB
 - Storage Root Key decrypts an intermediate key
 - This key is combined with the key on the USB to create another intermediate key
 - The intermediate key is used to decrypt the Volume Master Key
- TPM + PIN or Enhanced PIN + USB

The Evil Maid

- You leave the laptop in the hotel room
- Evil maid sneaks into room
 - Boots the laptop from an evil USB stick and replace the MBR with an evil MBR which contains a fake PIN prompt
- You power on the laptop, enter the correct PIN, the evil MBR say that the PIN is incorrect, and the machine reboots
 - The evil MBR has sniffed the PIN and written it to disk
 - The evil MBR has replaced itself with the correct MBR
 - Everything is OK on the next boot
- The evil maid sneaks back into the room and retrieves the PIN and possibly the machine

Source: The Invisible Things Lab's blog

Other uses of the TPM on Windows 8.X

- Network unlock
 - No pin required if on a trusted network
 - Pin required when roaming
- TPM based certificate storage
 - The certificate template can be configured to specify the TPM to protect/store the private key
 - Software can never discover the private key
- TPM based virtual smart card
 - The TPM act as a permanently inserted smart card
 - Simulate a smart card reader

Conclusion

- TPM is a tamper-resistant security chip that can be used for
 - Machine authentication
 - Machine attestation (to some extent)
 - Data protection
- There exists a number of applications that make use of the TPM
 - Especially on the Windows platform

31 / 32

- But there are a number of problems that needs to be solved before we can fulfill the grand vision of Trusted Computing
- Considering the cost of a TPM, you get a lot of security for your money!

Further reading

- David Challener et al. A Practical Guide to Trusted Computing, IBM Press, 2008.
- Ariel Segall. Introduction to Trusted Computing, 2012.
 http://opensecuritytraining.info/IntroToTrustedComputing.html
- TCG. TPM Main Specification, Level 2 Version 1.2, Revision 116, 2011.
 http://www.trustedcomputinggroup.org/resources/tpm_main_specification
- ISO/IEC. ISO/IEC 11889:2009 Trusted Platform Module, 2009.
 - Recommend "Part 1: Overview" and "Part 2: Design principles"

32 / 32