
From TPM 1.2 to 2.0 and some
more
Federico Mancini
AFSecurity Seminar, 30.11.2015

The trusted platform module - TPM

• The TPM (Trusted Platform Module) is both a set
of specifications and its implementation.

• In particular a library as of 2.0
• The TPM is a passive device (it can only perform

actions if asked to), soldered to the motherboard,
that can be used to perform some cryptographic
operations in a protected environment.

• Main Goal: increase trust in a platform

Some context: Trust vs Security

• A trusted system is one that behaves as expected, not a guarantee
• A trustworthy system is one whose behaviour can be predicted – the base

on which one can decide whether to put their trust in the system or not
(trustworthy computing)

• A secure system is one that has been certified to enforce correctly and
reliably some specific security policy

• The TPM implementation can be secure, but not the platform on which it is
attached

• The platform will be trusted to report certain values in a correct way,
because it uses the TPM to do so

• I can take a decision about whether to further trust the platform with other
tasks based on the TPM supported funcionalities

I can trust that a system is running Windows because the TPM says so. That
does not make it secure.

Inside a TPM

Endorsment Key
(EK)

Storage Root Key
(SRK)

Certificates

Policies/AuthData

1

8

16

17

21

24

RNG

RSA Engine

Program Code

NVRAM

PCRs

I/O

CRYPTO

SHA-1 Engine

Key Generation

Exec Engine

Opt-In

OTHER

Platform Configuration Registers - PCR

• 20 bytes registers to store
SHA-1 hashes.

• Cannot be written directly, only
extended: PCR = SHA-
1(Current value || new hash)

• 1-8 reserved. At least 24 must
be present.

• They are always reset at boot
time and only then.

NVRAM

PCRs

CRYPTO Endorsment Key
(EK)

Storage Root Key
(SRK)

Certificates

Policies/AuthData

1

8

16

17

21

24

RNG

RSA Engine

Program Code

NVRAM

PCRs

I/O

CRYPTO

SHA-1 Engine

Key Generation

Exec Engine

Opt-In

OTHER

TPM main functionalities

• Better cryptographic services:
– Hardware protected crypto operations
– Hardware protected data encryption
– Hardware protection against password guessing

• New functionalities:
– Platform integrity protection (Trusted Boot)
– Platform Attestation
– Sealing
– Anonimity

≈ Smart cards

Trusted Boot

324HIAS23408ADFI

INR89403UE83FOQ

N356SDDW654SD

PCRs

BIOS MBR BOOT
LOADER OS

DS654SD97PHJD

Each component involved in the boot process is measured, and the
measurement stored both in the TPM PCRs and in a Log File.

MEASURE MEASURE MEASURE MEASURE
RUN RUN RUN RUN

STORE STORE STORE STORE

Integrity protection
Log file

PCR values can be used to verify the integrity of the log file

• Why should we trust the PCR values?
• What if a malware was installed that stored fake measurements?
• Who measured the system?

324HIAS23408ADFI

INR89403UE83FOQ

N356SDDW654SD

PCRs

DS654SD97PHJD

Where does the trust come from?

CORRECT FILE
MEASUREMENTS

TPM PROTECTION

?

CORRECT
IMPLEMENTATION

TEMPER PROOF

ROOT OF TRUST
FOR

MEASUREMENTS

ASSURANCE Lv 4

BIOS MBR BOOT
LOADER OS

MEASURE MEASURE MEASURE MEASURE
RUN RUN RUN RUN

• Always executed (first)
• Non-bypassable
• Correctly implemented
• Immutable

Root of Trust for Measurement

BIOS MBR BOOT
LOADER OS

MEASURE MEASURE MEASURE MEASURE
RUN RUN RUN RUN CRTM

324HIAS23408ADFI

INR89403UE83FOQ

N356SDDW654SD

PCRs

DS654SD97PHJD

CORE ROOT OF TRUST FOR MEASUREMENT

Root of Trust for Measurement

BIOS MALWARE
BOOT

LOADER OS
MEASURE MEASURE MEASURE MEASURE

RUN RUN RUN RUN CRTM

324HIAS23408ADFI

N356SDDW654SD

PCRs

……

INR89403UE83FOQ

POTENTIALLY COMPROMISED

Guarantee that there is always a component that will measure the malware

• Secure boot:
special PCR with
good
configuration
value

• Verified boot:
signatures of
components

• Measured boot:
pretty much the
same

S-CRTM Problems

• It should be part of the TPM, but it was too difficult to do in practice
because of that architectural changes needed.

• It is implemented instead as the first boot sector of the BIOS.
• There is no clear reference for how to implement it and every OEM

does it on its own way.
• Not surprisingly there have been uncovered many implementation

issues that reveal how PCR values are extended uncorrectly or not
at all:
– J. Butterworth, C. Kallenberg, X. Kovah and A. Herzog, "BIOS

chronomancy: fixing the core root of trust for measurement,"
Proceedings of CCS'13 - ACM Conference on Computer and
Communications Security, Berlin, Germany, 2013.

Upgrades

• What if I update my BIOS or some drivers?
• What I have have to upgrade or replace some hardware?
• How many possible «good» configurations can I have in a DB?
• Not practical

• TPM 2.0 tries to address this problem allowing more flexible policies

about the PCR values

Attestation protocol: Root of trust for Reporting

DB with valid
configurations

Proof that PCR are genuine

SML

SML

SML

PKI infrastructure

TPM Keys
for Platform

Identity

• No CA really supports any of
these specifications

• Only Infineon ships TPM with
actual pre-sintalled certificates
signed by Verisign

• A TPM cannot create standard
X.509v3 certificates

• It cannot even sign certificate
requests

• A Privacy CA should take care of
it, but none is implemented and
deployed publically

• TPM 2.0 try to do something
about this

Anonimity

• Each TPM has a unique RSA key pair called Endorsment Key (EK)
and a certificate certifying that the EK belongs to a genuine TPM

• This to allow third parties to verify that they are talking to a real TPM
and that the compromise of one TPM does not affect all the other
(otherwise one global TPM key could have been used)

• However, this also means that each TPM is identifiable.
• That is why the EK cannot be used for signing, but only encrypting

and decrypting, and a TPM can create as many Attestation Identity
Keys (AIK) as it wishes to be used to sign TPM generated content
instead.

• But how to certify that these AIKs also are generated and protected
in a genuine TPM?

Privacy CA (PCA)

Direct Anonymous Attestation
ISSUER

VERIFIER 1 EK
(DAAcert)PK’

CA

(PK)CA (PK’)PK

Verify message by
using PK’ and PK

VERIFIER 2

TPM 2.0 has a standard ECC-DAA
functionality

Sealing/Binding

TPM 2048 RSA KEY

SYMMETRIC
KEY

SYMMETRIC KEY

DATA

ENCRYPTION
SOFTWARE

USER
PASSWORD

PCR[1,2,3…]

PCRs
1

8

16

17

21

24

PCRs

TPM 2048 RSA
KEY (Private)

NVRAM

SYMMETRIC
KEY

USER
PASSWORD

PCR[1,2,3…]

USER DATA

USER PASSWORD

TRUSTED BOOT

TPM 2.0 has many
more authentication
methods

TPM 1.2 Key Hierarchy

Problems

• We cannot say much about what happens «after» the OS takes
control

• We need to maintain a potentially huge database of valid platform
configurations

• We need an infrastracture parallel to PKI to manage TPM
certificates

• Users do not want someone else to have control of their machines
• Many restrictions on the key usage

After the OS

• Trusted Execution Environment (TEE) and Dynamic Root of
Trust: A secure and sanitized environment is created in hardware
on the fly in order to run code securely, even if the system is
compromised. TPM can be used to attest that code was securely
run. Implementations:
– Intel TXT
– AMD-V
– ARM TrustZone

• Separation Kernel/MILS: A secure separation kernel or hyper-visor
is securely loaded with trusted boot, and different security domains
are run in parallel. One domain is dedicated to TPM operations, so
that the user or other processes cannot interphere.

Intel TXT
SINIT AC
MODULE

Intel
Signature

MLE MODULE
(Measure Launch

Environment)

OS/BIOS/V
M….

CPU

SINIT AC MLE

TPM

PCR 17

Execute SENTER

LOAD IN MEMORY

ILP=BSP

1. Stop other processors
2. Mask all external events
3. Validate SINIT AC signature
4. Reset PCR 17-20 to a special value and

extend 17 with SINIT hash
5. Unlock the chipset , load the SINIT AC

and pass control to it

1. Test Hardware configuration
2. Initialize SMM handling
3. Enable DMA handling
4. Load and measure MLE
5. Store MLE hash in TPM
6. Pass control to MLE

MLE execution

PCR 18

Intel SGX (Secure Guard Extensions) is coming next to add flexibility. Reminds of Flicker.

TPM 2.0

With content copied and pasted shamelessly from:

• David Challener, «TPM 2.0 – Re-envisioning the TPM», Trusted

Infrastructure Workshop, 2013 The Pennsylvania State University,
University Park, PA.

• David Wooten, “TPM 2.0”, Partner Architect Microsoft Corp., 25
October 2013, Trusted Computing Group.

• Liqun Chen, «From TPM 1.2 to TPM 2.0», ETISS 2013, Gratz,
Austria.

• Will Arthur and David Challener, «A Practical Guide to TPM 2.0»,
Apress Open, 2014.

• Graeme Proudler, Liqun Chen and Chris Dalton, «Trusted
Computing Platforms – TPM 2.0 in context», Springer 2014.

• Various TCG specifications

TPM 2.0

• Support for new algorithms: flexibility for the inclusion of a variety
of algorithms, Elliptic curve-based algorithms and SHA-2 . and
potentially multiple “algorithm sets” on a single TPM.

• Support for more than one “bank” of PCRs: enables the TPM to
keep track of platform state using more than one distinct hash
algorithm

• Inclusion of three ownership hierarchies: a “platform hierarchy”
for platform protection, an “endorsement hierarchy” for privacy
control and a “storage hierarchy” for general cryptographic usage

• Support for enhanced authorization: support for very flexible and
fine-grained control over how and when TPM-protected data and
keys can be accessed

• More complex policies: policies can be combined with boolean
operator and support more scenarios

• Flexible keys: only two types of keys

Algorithms

TPM 1.2 supports
RSA encryption
RSA signature
RSA-DAA
SHA-1
HMAC
One-time-pad with XOR
AES (optional)

TPM 2.0 supports
RSA encryption and signature
ECC encryption and signature
ECC-DAA
ECDH
SHA-1, SHA-256
HMAC
AES and one-time-pad with XOR
Manufacturer can add any
algorithms with TCG IDs

More PCRs

TPM 2.0 - Hierarchies

• In TPM 1.2, everything is under the control of the “Owner”
– If the TPM is not enabled, activated, and owned; there isn’t much that

can be done with it
– If you are the Owner, you control both the security and privacy functions

• In TPM 2.0, there are three separate domains
– Security – functions that protect the security of the user
– Privacy – functions that expose the identity of the platform/user
– Platform – functions that protect the integrity of the platform/firmware

services
• Each domain has its own resources and controls

– Security – ownerAuth, storage hierarchy, hierarchy enable
– Privacy – endorsementAuth, endorsement hierarchy
– Platform – platformAuth, platform hierarchy

TPM 2.0 - Hierarchies

TPM 2.0 – Platform Hierarchy

• Platform hierarchy
– For platform firmware BIOS/UEFI
– When the platform boots, the platform hierarchy is enabled and platformAuth is

set to a new value
• Allows use of the TPM to ensure the integrity of the firmware
• This is not a capability that should be under control of the user, so it isn’t

– PlatformAuth can be used to:
• Allocate NonVolatile memory resources
• Initialize the TPM
• Control the enables of the other hierarchies

– Before platform firmware turns control of system to OS, phEnable can be turned
off or platformAuth can be randomized

• PlatformAuth would be placed in secure location (SMM) so that only platform
firmware would be able to access it

TPM 2.0 – Endorsement Hierarchy

• Endorsement hierarchy
– For privacy administrator

• Endorsment keys

– As many as one wish
– Created from a secret seed
– Can be used to sign
– Can be used with different algorithms
– Belongs to its own key hierarchy

– Examples:

• One can create a signing EK to sign a CSR and get a Device ID
directly from the certificate autorithy that has a list of valid EK

• If EK comes with EK credentials, it should not be allowed to sign to
preserve privacy

TPM 2.0 - One seed to rule them all

TPM 2.0 – Keys

• No more many types of keys, only restricted and unrestricted, with
possibility to choose what they do. Even EK.

• Restricted simply means that they will not sign any external data that
resembles a TPM data structure.

TPM 2.0 – Enhanched Authorization (EA)

All these forms for authorizations can
also be combined to create complex
access policies.

TPM 2.0 – Locking to a PCR

• You can lock not just to a certain set of PCRs equals a certain value

• You can also lock to: “Any set of PCRs / values signed by an authority,

as represented by this public key”

Examples:
– You can lock to “PCR 0 (the BIOS) as signed by DELL”

• Thereafter upgrading your BIOS to a signed DELL BIOS won’t
cause problems!

– You can lock to “PCR values signed by IT”
• Thereafter IT need only sign new values to make them useable

How to do that

TPM2_PolicyAuthorize() allow a policy to have an “authority”
determine if some policy is OK rather than have the policy
hardwired in

– Example: The policyHash representing a set of good PCR is known to
the OEM

– The OEM signs a digest that represents the policyHash representing the
good PCR and distributes it along with their BIOS update

– The user can create a policy that says, “if the OEM approves the PCR
settings they are OK with me”

– Use TPM2_PolicyPCR() to set the policyHash to the current value of the
PCR and then use TPM2_PolicyAuthorize() to apply the OEM’s stamp
of approval to those PCR

Other TPM related things - Trusted Software
Stack (TSS)

• Teh software stack is needed by
applications to communicate
with theTPM.

• Trousers library written in C for
Linux offers TSS 2.0 support,
TSS.net from Microsoft also
supports 2.0 specs, while the
JSR321 for Java only supports
TSS 1.0

• Drivers for TPM are now
integrated in all modern OSes.

From JSR 321 wiki

A Trusted IdM for Tactical Operations

Current solution

1. Send an IS Request

1. Fetch User certificate
2. Validate it
3. Send it to the IdP

1. Fetch attribute list
2. Issue an IS (Identity Statement)
3. Encrypt it with user public key (PK) and send it

IS, communication protected with PK
Access control
decisions based on IS

CA

IdP

New Solution with TPM support

ADMIN
Certify TPM
and Platform
configuration

Generate AIK certificate
and store it on CA

Ask for an IS
Fetch AIK and
verify configuration

Use IS and TPM protected keys
to communicate on the field

Pre-deployment scenario

Generate and store
AIK certificate

indexed by a random
handle hashed

1. Activate TPM
2. Generate AIK
3. Quote PCRs

Send AIK certification request to CA

Return secret AIK handle encrypted with TPM public key

Login to CA
and approve
the issuing of a
AIK certificate

Deployment scenario

1. Generate a new key pair LK
2. Bind it to the current configuration
3. Sign it with the AIK and the user certificate

1. Hash AIK handle
2. Fetch AIK certificate
3. Fetch User certificate
4. Send them to the IdP

1. Check LK Signature
2. Compare pre and post deployment configuration
3. Fetch attributes
4. Issue an IS with degree of integrity/trust
5. Encrypt it with LK and send it

IS, communication protected with LK
Access control
decisions based on IS

Some experience with implementing with TPM

• Few available TSS, not implementing all needed functionalities
• No PCA implementation available, only some limited prototype
• Only Infineon provides EK certificates signed by Verisign
• We had to change the TSS code to unpack the TPM certificate request and

change it to Java objects
• A special x.509v3 extension called SKAE (Subject Key Attestation

Evidence) is to be used to integrated TPM info in a certificate. OpenSSL
does not support it.

• AIK cannot sign CSR (Certificate Signing Requests)
• Heavy to send your AIK certificate in all transactions
• We do not have a DB with approved configurations, but a pre-deployment

phase where we issue an AIK bound to specific PCR values and check that
the same values are still there when the user want to certificate a new
legacy key

• We re-parsed all TPM data-structure to use standard Java objects instead,
since TPM-enables and non-TPM nodes had to be interoperable.

Products using TPM

• Windows 8/10 verified/authenticated boot
• Bitlocker
• Google Chromebook
• Various vendors implementing certificate/key storage on TPM
• Integrity Measurement Architecture in Linux kernel
• Some Google routers
• Strong Swan
• …..

	From TPM 1.2 to 2.0 and some more
	The trusted platform module - TPM
	Some context: Trust vs Security
	Inside a TPM
	Platform Configuration Registers - PCR
	TPM main functionalities
	Trusted Boot
	Integrity protection
	Where does the trust come from?
	Root of Trust for Measurement
	Root of Trust for Measurement
	S-CRTM Problems	
	Upgrades	
	Attestation protocol: Root of trust for Reporting
	PKI infrastructure
	Anonimity
	Privacy CA (PCA)
	Direct Anonymous Attestation
	Sealing/Binding
	TPM 1.2 Key Hierarchy
	Problems
	After the OS
	Intel TXT
	TPM 2.0
	TPM 2.0
	Algorithms
	More PCRs
	TPM 2.0 - Hierarchies
	TPM 2.0 - Hierarchies
	TPM 2.0 – Platform Hierarchy
	TPM 2.0 – Endorsement Hierarchy
	TPM 2.0 - One seed to rule them all
	TPM 2.0 – Keys
	TPM 2.0 – Enhanched Authorization (EA)
	TPM 2.0 – Locking to a PCR	
	How to do that	
	Other TPM related things - Trusted Software Stack (TSS)
	A Trusted IdM for Tactical Operations
	Current solution
	New Solution with TPM support
	Pre-deployment scenario
	Deployment scenario
	Some experience with implementing with TPM
	Products using TPM	

