

Quantum Information Processing and Diagrams of States

September 17th 2009, AFSecurity

Sara Felloni

sara@unik.no/sara.felloni@iet.ntnu.no

Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/

UNIK – University Graduate Center

NTNU, Department of Electronics and Telecommunications

Quantum Information Processing

- Quantum Computing
- Quantum Information Processing
- Quantum Algorithms
- Quantum Information Protocols
- Possibilities of Quantum Computing
- Quantum Information Representations
- Single qubit states
- Generation of single-qubit states

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

Quantum Information Processing

Quantum Computing

Quantum Information Processing

Quantum Computing

- Quantum Information Processing
- Quantum Algorithms
- Quantum Information Protocols
- Possibilities of Quantum Computing
- Quantum Information Representations
- Single qubit states
- Generation of single-qubit states

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

...is the study of the information processing tasks performed by means of **quantum-mechanical systems**:

- ▲ The elementary physical carrier of information is a qubit described by a 2-dimensional Hilbert space
- ▲ The state of a **n-qubit register** lives in a 2^n -dimensional Hilbert space tensor product of n 2-dimensional spaces
- ▲ By imitating classical computations, quantum computations comprise three steps in sequence:
 - Preparation of the initial state of the register
 - Computation by quantum gate arrays unitary transformations of the register state
 - Output of the final result by probabilistic measurement of all or part of the register

Quantum Information Processing

Quantum Information Processing

Quantum Computing

Quantum Information Processing

- Quantum Algorithms
- Quantum Information Protocols
- Possibilities of Quantum Computing
- Quantum Information Representations
- Single qubit states
- Generation of single-qubit states

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

...exploits the **peculiar properties** of quantum systems:

- ▲ The superposition principle superpositions of different input states are processed simultaneously
- ▲ Quantum interference information behaves and propagates as interactions of wave patterns
- ▲ Quantum entanglement non-classical correlations exist between observable physical properties of spatially separated systems

...in order to:

- solve several computational problems more efficiently than by classical computers
- open up new possibilities for communication and cryptography
- efficiently simulate physical systems

Quantum Algorithms

Quantum Information
Processing

- Quantum Computing
- Quantum Information Processing

Quantum Algorithms

- Quantum Information Protocols
- Possibilities of Quantum Computing
- Quantum Information Representations
- Single qubit states
- Generation of single-qubit states

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

...can currently be enumerated under few classes:

- ▲ Basic/early quantum algorithms explorations of the features later exploited by more powerful algorithms, Deutsch's algorithm for global properties of functions sets
- ▲ Algorithms based on **amplitude amplification** Grover's search in unstructured databases, quantum amplitude estimation and quantum counting
- ▲ Algorithms with a **super-polynomial speed-up** the quantum Fourier transform, Shor's factoring and period finding algorithm
- ▲ Algorithms for the **simulation of dynamical systems** natural exploitation of the inherent quantum-mechanical behavior

Quantum Information Protocols

Quantum Information Processing

- Quantum Computing
- Quantum Information Processing
- Quantum Algorithms

Quantum Information Protocols

- Possibilities of Quantum Computing
- Quantum Information Representations
- Single qubit states
- Generation of single-qubit states

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

...include several practical applications in **communication** and **information theory**:

- ▲ Quantum cryptography no-cloning allows eavesdropping detection in ideal key generation/distribution protocols
- ▲ Quantum cloning imperfect cloning of information allows state estimation and (partial) eavesdropping
- ▲ **Dense coding** entanglement enhances communication of classical information
- ▲ Quantum teleportation entanglement and classical communication allow reconstruction of quantum information
- ▲ Entanglement purification distillation of nearly perfect (from many imperfect) entangled states
- ▲ Optimal compression of quantum information, reliable transmissions in noisy channels, quantum error correction...

Possibilities of Quantum Computing

... have not yet been completely determined.

Quantum Information Processing

- Quantum Computing
- Quantum Information Processing
- Quantum Algorithms
- Quantum Information Protocols
- Possibilities of Quantum Computing
- Quantum Information Representations
- Single qubit states
- Generation of single-qubit states

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

Known

▲ Appropriately devised quantum computations can be **more efficient** than their classical counterparts

Not yet known

- ▲ The ultimate efficiency of quantum computers
- ▲ A general approach to devise quantum algorithms and protocols

Analyzing in depth the functioning of known quantum computations helps understand how to successfully exploit

- ▲ the computational resources offered by quantum-mechanical systems
- ▲ the hidden structure of the considered problems

Quantum Information Representations

Quantum Information Processing

- Quantum Computing
- Quantum Information Processing
- Quantum Algorithms
- Quantum Information Protocols
- Possibilities of Quantum Computing
- Quantum Information Representations
- Single qubit states
- Generation of single-qubit states

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

...have a key role in helping understand the functioning of quantum algorithms and protocols:

Quantum Circuits

- Horizontal lines represent single qubits
- ▲ Quantum gates are applied from left (input) to right (output)
- ▲ They naturally provide physical feasibility of computations and a straightforward link to physical implementation

Diagrams of States

- ▲ Horizontal lines represent quantum states (of the computational basis)
- ▲ State transformations corresponding to quantum gates are illustrated from left (input) to right (output)
- ▲ They are to be used in addition to mathematical formalism and quantum circuits too synthetic to visualize the information processing

Single qubit states

Quantum Information Processing

• Quantum Computing

Quantum Information Processing

Quantum Algorithms

Quantum Information Protocols

Possibilities of Quantum Computing

Quantum Information Representations

Single qubit states

• Generation of single-qubit states

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

...can be represented by the **Bloch sphere representation**:

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Spherical coordinates:

$$|\Psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\Phi}\sin\frac{\theta}{2}|1\rangle = \begin{bmatrix} \cos\frac{\theta}{2} \\ e^{i\Phi}\sin\frac{\theta}{2} \end{bmatrix}$$

Cartesian coordinates in the three-dimensional space embedding the Bloch sphere:

Generation of single-qubit states

Quantum Information Processing

- Quantum Computing
- Quantum Information Processing
- Quantum Algorithms
- Quantum Information Protocols
- Possibilities of Quantum Computing
- Quantum Information Representations
- Single qubit states

• Generation of single-qubit states

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

...is obtained by applying a θ -rotation about the y axis of the Bloch sphere and a **phase-shift** gate with initial state $|0\rangle$:

$$|\Psi\rangle = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\delta} \end{bmatrix} \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos\frac{\theta}{2} \\ e^{i\delta}\sin\frac{\theta}{2} \end{bmatrix}$$

Quantum circuit (left) and Diagram of states (right)

- ▲ The initial state $|0\rangle$ determines the **active information**
- ▲ From left to right, active information flows on the thick lines, while thin lines correspond to absence of information

Quantum Information Processing

Diagrams of States: Practical Applications

- Quantum Diagrams of States
- Synthesis of Multi-qubit Gates
- ▶ Bell States
- Bell States: Diagrams of States
- Quantum Teleportation
- ◆ Teleportation: Diagram of States
- Quantum Dense Coding
- Dense Coding: Diagrams of States
- ▶ Grover's Search Algorithm
- Grover's Algorithm: Diagram of States

Entanglement Purification

Conclusions and Bibliography

Diagrams of States: Practical Applications

Quantum Diagrams of States

Quantum Information Processing

Diagrams of States: Practical Applications

Quantum Diagrams of States

- Synthesis of Multi-qubit Gates
- Bell States
- Bell States: Diagrams of States
- Quantum Teleportation
- ◆ Teleportation: Diagram of States
- Quantum Dense Coding
- Dense Coding: Diagrams of States
- Grover's Search Algorithm
- Grover's Algorithm: Diagram of States

Entanglement Purification

Conclusions and Bibliography

... **graphically represent** and analyze how the **information** encoded in **quantum states** is **processed** during computations performed by quantum circuits.

To analyze given quantum processes:

- ▲ Derive complete diagrams directly from implementations by quantum circuits
- ▲ Rearrange into simplified diagrams to visualize the overall effects of computations

To **conceive** new quantum computations:

- ▲ **Describe** schematically the **desired manipulations** of information by simple diagrams
- ▲ Expand into the equivalent complete diagrams to obtain implementations by quantum circuits

Synthesis of Multi-qubit Gates

A general three-qubit controlled U-gate, with control from the two most significant qubits, is obtained by applying two cnot gates and three controlled V-gates with control from a single-qubit.

- lacktriangle The diagram replaces a five 8×8 -dimensional matrix multiplication
- ▲ The controlled unitary matrix V is such that $V^2 = U$

Bell States

Bell states are defined as **maximally entangled states** of two qubits:

$$|\Psi^{\pm}\rangle = \frac{1}{\sqrt{2}}\{|01\rangle\pm|10\rangle\} \qquad |\Phi^{\pm}\rangle = \frac{1}{\sqrt{2}}\{|00\rangle\pm|11\rangle\}$$

- ▲ Perfectly correlated even when spatially separated EPR phenomenon
- ▲ Fundamental **resources** for several main algorithms and experiments: quantum teleportation, dense coding, entanglement-based cryptography, entanglement-based protocols...

- ▲ Bell states generation from the computational basis states (left)
- ▲ Bell measurements measurements in respect to Bell basis (right)

Bell States: Diagrams of States

Bell states generation (left) and Bell measurements (right)

- ▲ The initial state determines the **active information** lines
- ▲ Output states are determined by **constructive** and **destructive interference** in the active lines caused by Hadamard gates

Quantum Teleportation

- An unknown quantum state $|\psi\rangle$ is transferred by classical communication and by sharing a Bell state
- lacktriangle A direct **measurement** of the quantum system would **perturb** its state, offering **too little information** to reconstruct the state $|\psi\rangle$

(1) definition of initial states; (2) Hadamard and CNOT gates to generate the Bell state $|\Phi^+\rangle$; (3) CNOT and Hadamard gates to perform Bell measurements; (4) measurement in the computational basis of the two most significant qubits (sender); (5) action on the least significant qubit (receiver) determined by the sender's measurement results (double lines denote classical information).

Teleportation: Diagram of States

- \blacktriangle The initial state parameters a, b determine the **active information** lines
- ▲ The active information is **spread** by Hadamard gates
- ▲ The action on the least significant qubit (receiver) is determined by the sender's measurement results
- lacktriangle The state $|\psi\rangle$ is **perfectly reconstructed** in output

Quantum Dense Coding

- ▲ Two classical bits of information are communicated by actually transmitting only one quantum bit of information
- ▲ A direct measurement of one quantum bit would give only a single classical bit of information

(1) definition of initial states; (2) Hadamard and CNOT gates to generate the Bell state $|\Phi^{+}\rangle$; (3) unitary operation (sender) on half entangled pair, according to the two classical bits to communicate; (4) CNOT and Hadamard gates to perform Bell measurements; (5) measurement in the computational basis.

Dense Coding: Diagrams of States

- ▲ Four possible unitary operations are performed by the sender according to the two classical bits to communicate
- ▲ Output states are determined by **constructive** and **destructive** interference caused by Hadamard gates and by the sender's operation
- ▲ The two desired classical bits are **communicated** with **unit probability**

Grover's Search Algorithm

- Main representative of search heuristics for unstructured problems
- ▲ It addresses the problem of searching for **one marked item** inside an unstructured database of $N=2^n$ items
- ▲ Quadratic speed up in resolution of general search problems

A quantum circuit implementing Grover's algorithm to find one item out of N=4, represented by two qubits: "A" - preparation of the state of the register and ancillary qubits; "B" - oracle query; "C" - main instruction.

Grover's Algorithm: Diagram of States

- ▲ Information in **thick lines** is spread by the Hadamard gates and subsequently manipulated by the **oracle function**
- ▲ The output state is determined by **constructive** and **destructive interference** caused by Hadamard gates
- ▲ The final active output lines correspond to basis states $|100\rangle$ and $|101\rangle$: Measurement gives as outcome the marked item "10" with certainty
- \blacktriangle The search problem is solved with a **single query** of the **oracle function** f

Quantum Information Processing

Diagrams of States: Practical Applications

Entanglement Purification

- Reliable Quantum Transmissions
- ▶ Entanglement Purification
- Quantum Privacy Amplification
- QPA Protocol: Diagram of States
- QPA Iterations
- Fidelity and Survival Probability

Conclusions and Bibliography

Entanglement Purification

Reliable Quantum Transmissions

Quantum Information Processing

Diagrams of States: Practical Applications

Entanglement Purification

C Reliable Quantum Transmissions

- ▶ Entanglement Purification
- Quantum Privacy Amplification
- OPA Protocol: Diagram of
- **QPA** Iterations
- Fidelity and Survival Probability

Conclusions and Bibliography

- ▲ A fundamental problem in quantum communication is how to reliably transmit information through noisy channels:
 - decoherence undesired interactions between qubits carrying information and the environment
 - imperfections in the quantum components implementing the communication apparatus
 - eavesdropping operations performed on the qubits carrying information in a cryptographic scenario
- ▲ In communication and cryptographic protocols the communicating parties resources are spatially separated
- ▲ Any information reconciliation or error-correcting procedure must be Locc – local operations and classical communication

Entanglement Purification

Quantum Information Processing

Diagrams of States: Practical Applications

Entanglement Purification

▶ Reliable Quantum Transmissions

▶ Entanglement Purification

- Quantum Privacy Amplification
- QPA Protocol: Diagram of States
- QPA Iterations
- Fidelity and Survival Probability

Conclusions and Bibliography

When considering **entanglement-based communication** protocols, special LOCC protocols – also entanglement-based – can be used to:

- ▲ improve the quality and the amount of entanglement in the initially imperfect shared pairs
 - in protocols requiring high-quality entanglement: teleportation, quantum repeaters...
- ▲ reduce the entanglement with any outside system to arbitrarily low values
 - eliminating eavesdropping in cryptography...

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu and A. Sanpera Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels – Phys. Rev. Lett. 77, 2818 (1996)

Quantum Privacy Amplification

Quantum Information Processing

Diagrams of States: Practical Applications

Entanglement Purification

- Reliable Quantum
 Transmissions
- Entanglement Purification
- Quantum PrivacyAmplification
- ▶ QPA Protocol: Diagram of States
- QPA Iterations
- Fidelity and Survival Probability

Conclusions and Bibliography

The QPA protocol purifies entanglement by creating nearly perfect EPR states out of exponentially many partially entangled states:

- The initial mixed pairs are described by the density matrices ρ_{AB}
- The two communicating parties locally perform rotations and CNOT gates
- The two most significant qubits are measured
- The final output is a purified state ρ'_{AB} , when the detectors D_0 and D_1 give the same outcomes

QPA Protocol: Diagram of States

- \blacktriangle Purification of imperfect state $|\Phi^+\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- lacktriangle $|\Phi^+\rangle$ components determine the **active information** lines
- ▲ The purified output state is determined by **constructive** and **destructive interference** caused by Hadamard gates (arrows at the bottom)

QPA Iterations

- Quantum circuit implementing two iterations of the QPA protocol
- lacktriangle At least 2^n imperfect pairs are needed in input to obtain in output one purified pair after n iterations
- ▲ This number can be significantly larger pairs must be **discarded** whenever Alice and Bob obtain **different measurement outcomes**

Fidelity and Survival Probability

$$F = \langle \Phi^+ | \rho'_{AB} | \Phi^+ \rangle$$

from its optimal value F=1 on a logarithmic scale

Survival probability

$$P(n) = \prod_{i=1}^{n} p_i$$

with p_i = probability of coinciding outcomes at step i

...both as a function of the number of iterations n (horizontal axis)

▲ The protocol is successful for weak (solid line), middle (dashed line) and strong (dot-dashed line) eavesdropping intrusion or noise perturbation

Quantum Information Processing

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

Conclusive Remarks

References

Conclusions and Bibliography

Conclusive Remarks

- ▲ For any given quantum computation, **diagrams of states** offer both:
 - a detailed description of each gate action (complete diagram)
 - an overall visualization from input to output (simplified diagram)
- ▲ The diagram dimension **grows exponentially** in respect to the dimension of the examined quantum system:
 - Clearer visualization in respect to traditional descriptions
- ▲ Diagrams of states are **most useful** whenever quantum operations are described by **sparse matrices**:
 - Only non-null entries of matrices are associated with diagram lines
 - Only significant information flow and processing are shown
 - This requirement is indeed satisfied by most quantum computations

References

Quantum Information Processing

Diagrams of States: Practical Applications

Entanglement Purification

Conclusions and Bibliography

Conclusive Remarks

References

- [*] **Quantum Hacking Group**: http://www.iet.ntnu.no/groups/optics/qcr/, Department of Electronics and Telecommunications, NTNU, and UNIK University Graduate Center.
 - This work was carried out during the tenure of an **ERCIM** "Alain Bensoussan" **Fellowship Programme**.
- [1] G. Benenti, G. Casati, G. Strini, *Principles of Quantum Computation and Information, Volume I: Basic Concepts*, World Scientific, 2004.
- [2] G. Benenti, G. Casati, G. Strini, *Principles of Quantum Computation and Information, Volume II: Basic Tools And Special Topics*, World Scientific, 2007.
- [3] M. A. Nielsen, I. L. Chuang, *Quantum Computation and Quantum Information*, Cambridge University Press, 2000.
- [4] S. Felloni, A. Leporati, G. Strini, *Diagrams of states in quantum information: An illustrative tutorial*, International Journal of Unconventional Computing, to appear.
- [5] S. Felloni, A. Leporati, G. Strini, *Evolution of quantum systems by diagrams of states*, manuscript.
- [6] S. Felloni, G. Strini, *Entanglement-based computations by diagrams of states*, manuscript.
- [7] S. Felloni, G. Strini, Quantum algorithms by diagrams of states: Deutsch's and Grover's algorithms, submitted for publication.
- [8] G. Benenti, S. Felloni, G. Strini, *Effects of single-qubit quantum noise on entanglement purification*, Eur. Phys. J. D 38, p. 389, 2006.