Security model for resource availability – Subject and object type enforcement

Ole-Erik Hedenstad
Norwegian Defence Research Establishment
Overview

Security model for resource availability – Subject and object type enforcement (SOTE)

- What resource availability is
 - and some other terms
- "Subject and object type enforcement"
 - why
 - proposed new model
- Composite policy for cross-domain information flow
- Related work

A security model is a model that represents a particular policy or set of policies. (Bishop)
Availability

Let \(X \) be a set of entities and let \(I \) be a resource. Then \(I \) has the property of \textit{availability} with respect to \(X \) if all members of \(X \) can access \(I \). (Bishop)

\textit{Resource} availability regulates the access to resources in order to get timely, reliable and secure access to services and data.

- Availability is associated with requirements on throughput, redundancy, backups etc.
- We also include restrictions and conditions resources must fulfil in order to be available.
- We make a distinction between \textit{information} and \textit{resource} availability.
An *administrative domain* is a collection of computer systems to which applies the same set of security policies and security levels, executed by a single authority.
Rationale for SOTE

• Basic idea: to define the permitted information flows between resources of different types, typically between types of program components.

• Heterogeneous environments. The administrative domains do not implement the same set of security policies and security levels.

• The domains have requirements to control and confine the interaction with resources of the other domains:
 – express fine-grained restrictions on information flow, supports the principle of least privilege
 – express conditions a resource must fulfill
 – express intransitive (indirect) information flows

Subject and object type enforcement (SOTE)
Types of information flow

Remote

Service

Local data base

Top Secret

Secret

Confidential

Unclassified

Intransitive

Transitive
Assumptions

- Computers of the different administrative domains are connected to a common network.
- The computer systems within a domain implement the same set of security policies and levels.
- The cooperating parties (administrative domains) implement a common set of confidentiality, integrity and information availability policies, e.g. a set of NATO policies. However, the implemented security levels may vary from domain to domain.
- The SOTE resource availability policy is implemented in all actual administrative domains.
- Trust between cooperating parties has been established, and the cooperating parties have knowledge of the security policies and levels of the other part.
- Confidentiality, integrity and availability are independent security properties.
Information flow is controlled by defining the permitted interactions between types of *subject resources* and *object resources*.

![Diagram of resource types and permissions](image)
• Permitted **subject-to-object** interactions are specified for pairs of **subject resource type** and **object resource type**.

• The permission modes are none, read-related or write-related.

• Permitted **subject-to-subject** interactions are specified for pairs of **subject resource types**.

• In addition a set of security **requirements** and **conditions** can be associated with a **subject resource type** and an **object resource type**.

• Generalizations are used to define a **resource type hierarchy**.
Composite policy for cross-domain information flow - example

Own: adm. domain tactical

Multilevel security policy (C & I).
C = {Unclass, .., Secret}
I = {1, .., 7}
A = SOTE configuration

D1: adm. domain combat

Single level confidentiality, multi level integrity.
C = Restricted
I = {3, 4}
A = SOTE configuration
Related work

• Domain and Type Enforcement (DTE) is an enhanced version of type enforcements. Badger et al (1995), "Practical Domain and Type Enforcement for UNIX“

• DTE has been integrated with network services in a UNIX-based research prototype. Sherman et al (1995), "Controlling network communication with domain and type enforcement“

• The type enforcement security model is implemented in Security-Enhanced Linux (SELinux).
Summary

- A new security model for resource availability has been proposed, called SOTE.
- The SOTE model can express policies for information flow between resources of different administrative domains. It controls the types of resources that are allowed to interact.
- Type enforcements can express intransitive information flows.
- The model can express information flow policies at a fine-grained level.
- The ability to express the conditions a resource must fulfill, is also part of the model.
- Also a data model that describes SOTE and related security elements, using UML notation, has been proposed.