### Safety of Cyber-Physical Systems

#### Uli Fahrenberg

École polytechnique, Palaiseau, France

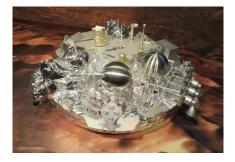
#### February 27, 2018





- Q Cyber-physical systems
- 3 Mathematical Models
- 4 Formal Verification
- 5 A Bit of UPPAAL
- 6 A Bit of SpaceEx




Cyber-physical systems

Mathematical Models

Formal Verification

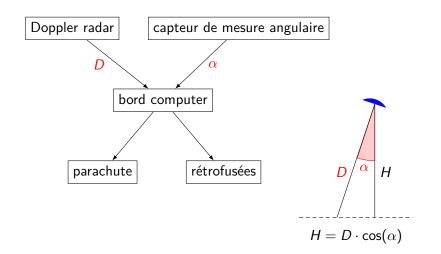
SpaceEx

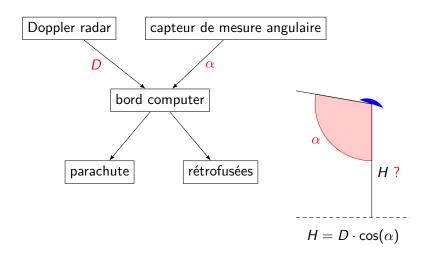
#### Schiaparelli ESA / Roscosmos Experimental Mars Lander



Cyber-physical systems

Mathematical Models

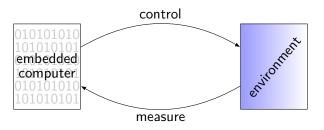

Formal Verification


L SpaceE

#### Schiaparelli ESA / Roscosmos Experimental Mars Lander



#### • an example of a cyber-physical system

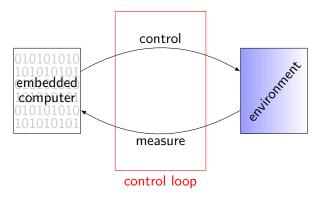





Formal Verification

SpaceEx

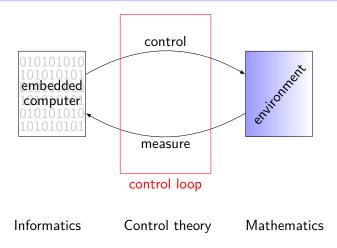
#### Cyber-physical systems Examples






Formal Verification

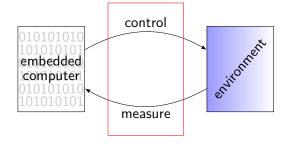
SpaceEx


#### Cyber-physical systems Schematic



Formal Verification

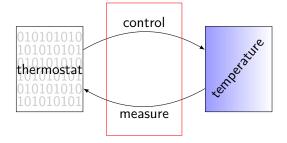
SpaceEx


#### Cyber-physical systems Schematic

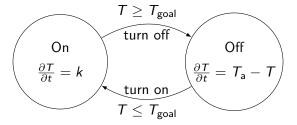


Iodels Formal Verification

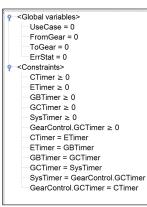
UPPAAL Spa

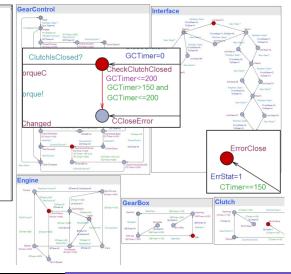

#### Hybrid Automata Model of a thermostat




dels Formal Verification

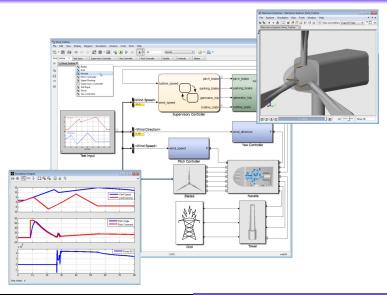
AL SpaceE


#### Hybrid Automata Model of a thermostat




as a hybrid automaton:




# Timed Automata



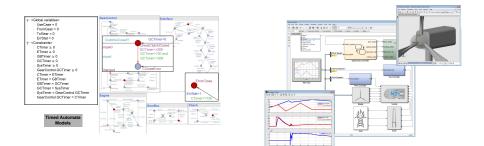


Timed Automata Models

#### Simulink Model of a wind turbine



#### Uli Fahrenberg


#### Safety of Cyber-Physical Systems

Mathematical Models

Formal Verification

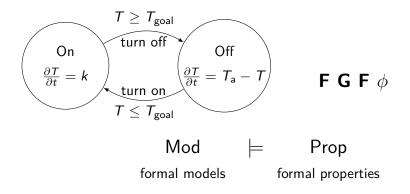
PAAL SpaceEx

# Mathematical Models in industry



- Mathematical modeling is an industry standard
- Especially in avionics / space flight
- Mostly Statechart models like with Simulink
- Used for testing design by simulation

L SpaceE×


#### Schiaparelli Or, Sometimes Simulation Does Not Suffice

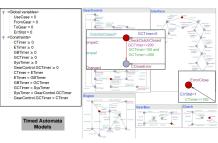


lels Formal Verification

UPPAAL Spa

#### Formal Verification Ensuring properties beyond simulation

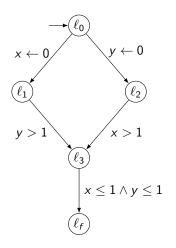


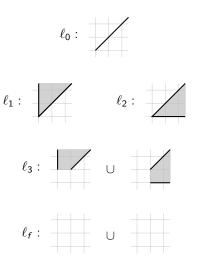

#### Formal Verification of CPS State of the art

#### Timed automata:

- formally decidable
- fast algorithms
- UPPAAL
- Iack expressivity
- extensions to weights and games

#### Hybrid automata:

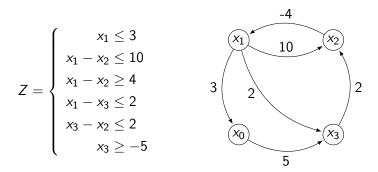

- formally undecidable
- over- and underapproximations
- SpaceEx, PHAVer, iSAT3, C2E2, ...
- curse of dimension
- sweet spot: linear hybrid automata




- combine simulation and verification
- statistical methods
- learning
- compositionality
- very active research area!

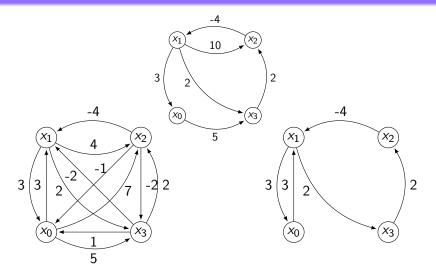
UPPAAL SpaceE

#### A Bit of UPPAAL: Zones






UPPAAL SpaceEx


#### Zones: Representation

#### $\mathsf{Zone} \rightsquigarrow \mathsf{digraph} \cong \mathsf{difference-bound} \mathsf{ matrix}$



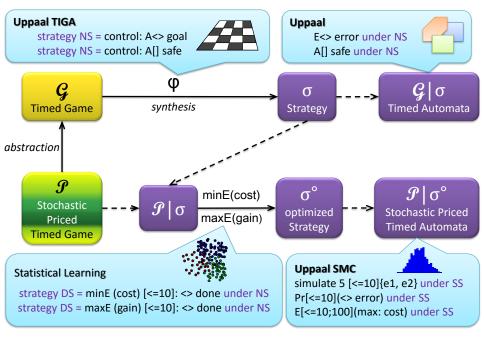
UPPAAL SpaceE>

#### Zones: Representation



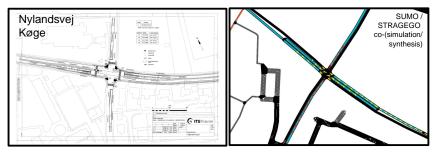
shortest-path closure

#### shortest-path reduction


Uli Fahrenberg

Safety of Cyber-Physical Systems

UPPAAL


#### Zones: Algorithms

- Using closures or reductions
- Delay, reset, intersection, inclusion check can be done in  $O(|C|^3)$
- In practice: combined Passed-Waiting list
- Each location has a list of zones ( $\cong$  union)
- Represented using clock decision diagrams
- Extract DBMs from CDD  $\rightsquigarrow$  perform operations on each  $\rightsquigarrow$  re-combine to new CDD



**UPPAAL STRATEGO** 

#### UPPAAL Stratego for Traffic Control



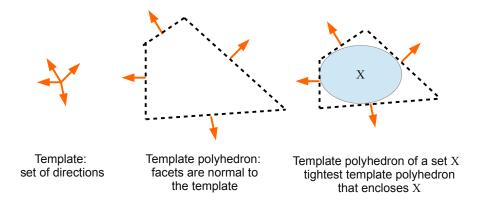
| Scenario | Static    |             | Loop Induction |             | Stratego  |             | Imp W time over<br>LI % |
|----------|-----------|-------------|----------------|-------------|-----------|-------------|-------------------------|
|          | Jam<br>Km | W time<br>s | Jam<br>Km      | W time<br>s | Jam<br>Km | W time<br>s |                         |
| MAX      | 1451      | 191990      | 1185           | 157200      | 551       | 73001       | 53.5%                   |
| MID      | 456       | 60362       | 369            | 48936       | 331       | 43878       | 10.00                   |
| LOW      | 138       | 18425       | 139            | 18566       | 101       | 13451       | 27.5%                   |

Scenario: 2 hours traffic

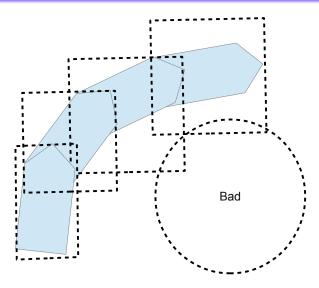
#### UPPAAL Stratego for Traffic Control

Number of cars waiting in each lane (full information)

- 1: Every 5 to 8 sec read sensor data
- 2: if Traffic Light in yellow phase then
- 3: Run UPPAAL STRATEGO decide next green phase
- 4: else if Traffic Light in green phase then
- 5: Run UPPAAL STRATEGO extend green phase or go to yellow 6: end if

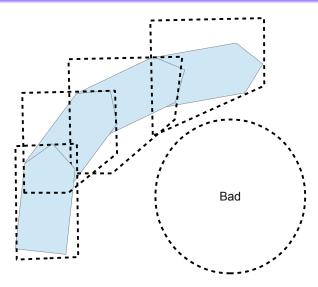

#### **ONLINE Synthesis**

- Identify optimal strategy up to horizon H=90sec.
  - Strategy changes phase (at least 5 sec).
    - Modelling of stochastic arrival of cars
  - in different directions (from 60-850 cars/hour)
- Minimize waiting time or jam (# of waiting >2sec)

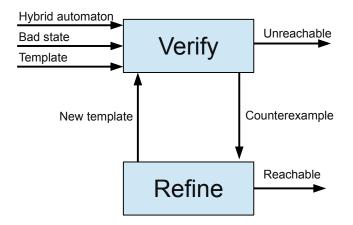

Formal Verification

SpaceEx

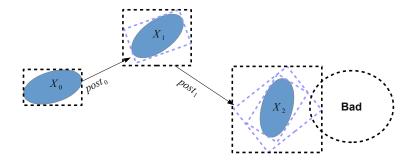
#### A Bit of SpaceEx: Template Polyhedra Bogomolov, Frehse, Giacobbe, Henzinger: TACAS 2017




#### Template Polyhedra: Reachability Analysis

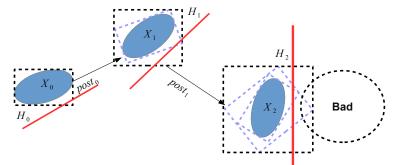



UPPAAL SpaceEx


#### Template Polyhedra: Reachability Analysis

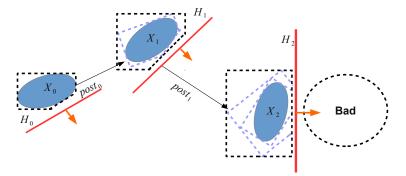


### CEGAR With Template Polyhedra




## Template refinement by interpolation



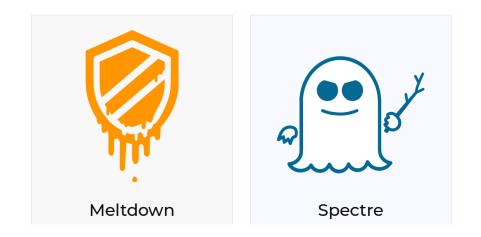

- Error accumulates (wrapping effect)
- Refinement must be inductive

## Template refinement by interpolation



• Extract a sequence of halfspaces  $H_0, H_1, H_2$  s.t.  $X_0 \subseteq H_0, post(H_0) \subseteq H_1, post(H_1) \subseteq H_2$  and  $H_2 \cap Bad = \emptyset$ 

## Template refinement by interpolation




- Take the outward pointing directions of  $H_0 H_1 H_2$
- Recompute the abstraction (excludes CE)

Formal Verification

AL SpaceEx

### Another CPS Problem



- a cyber-physical system: embedded computing system which interacts with its physical environment
- for safety of CPS: simulation
- but formal verification does have a role to play
- challenges: tighness of approximations; state space explosion; curse of dimension; compositionality
- our interest: formal verification for distributed CPS
- example: swarm of AUVs which explore a bay





Uli Fahrenberg

Safety of Cyber-Physical Systems