Physical Layer Security over Wireless Channels

Xiangyun (Sean) Zhou

UNIK - University Graduate Center
The University of Oslo, Norway

Research Collaborator: Prof. Matt McKay
Hong Kong University of Science and Technology, Hong Kong

26 August 2010
Outline

- Introduction to physical-layer security or information theoretic security.
- An example of using artificial noise to guarantee secrecy.
System Model

- Alice sends confidential information x to Bob.
- $y_B = h x + n_B$ is the received signal at Bob.
- $y_E = g x + n_E$ is the received signal at Eve.
System Model

- Alice sends confidential information x to Bob.
- $y_B = h x + n_B$ is the received signal at Bob.
- $y_E = g x + n_E$ is the received signal at Eve.
- What is the maximum data rate for perfect secrecy without secret key?
Secrecy Capacity

- $C(h)$ is the amount of information that can be transferred from Alice to Bob.
- $C(g)$ is the amount of information that can be transferred from Alice to Eve.
Secrecy Capacity

- $C(h)$ is the amount of information that can be transferred from Alice to Bob.
- $C(g)$ is the amount of information that can be transferred from Alice to Eve.
- Secrecy capacity: $C(h) - C(g)$.
- Encoding scheme: Binning, requires knowledge of h and g.
Type of Wireless Channel

- Path loss channel: h and g are constant, e.g. line-of-sight.
- Fading channel: h and g are random, e.g. lots of scatterers and obstacles.
Type of Wireless Channel

- Path loss channel: h and g are constant, e.g. line-of-sight.
- Fading channel: h and g are random, e.g. lots of scatterers and obstacles.
- Secret communication is possible if h is stronger than g: $C(h) - C(g) > 0$.
- The encoding requires knowledge of h and g.

AF Security Seminar (5 of 20) Physical Layer Security over Wireless Channels
What shall we do if we do not know the fading channel g?

Instead of instantaneous secrecy capacity $C(h) - C(g)$, we consider the ergodic secrecy capacity $\mathbb{E}_{h,g}\{C(h) - C(g)\}$.

Note that it is easy for Alice to know h. How to simultaneously make $C(h)$ as large as possible and $C(g)$ as small as possible with the knowledge of h but not g?
What shall we do if we do not know the fading channel \(g \)?

- Instead of instantaneous secrecy capacity \(C(h) - C(g) \), we consider the ergodic secrecy capacity \(\mathbb{E}_{h,g} \{ C(h) - C(g) \} \).
- Note that it is easy for Alice to know \(h \).
What shall we do if we do not know the fading channel g?

- Instead of instantaneous secrecy capacity $C(h) - C(g)$, we consider the ergodic secrecy capacity $\mathbb{E}_{h,g}\{C(h) - C(g)\}$.
- Note that it is easy for Alice to know h.
- How to simultaneously make $C(h)$ as large as possible and $C(g)$ as small as possible with the knowledge of h but not g?
The Use of Artificial Noise

- Alice transmits useful information to Bob, at the same time producing artificial noise to confuse Eve.
- Specifically, the artificial noise is mapped onto the subspace orthogonal to h.
- Note that Alice needs multiple antennas.
The Optimization Problem: Power Allocation

With a total transmit power constraint, what is the optimal power split between transmissions of information and artificial noise?
Power Allocation Parameters

- **Alice** has a total amount of transmit power budget P.
- A portion, denoted by ϕ, of P is allocated for information transmission.
- What is the optimal value of ϕ that maximizes the ergodic secrecy capacity $\mathbb{E}_{h,g}\{C(h) - C(g)\}$?
- How does the optimal value of ϕ changes with the number of antennas at **Alice** N_A?
x-axis: power budget P. y-axis: optimal value of ϕ.
N_A: number of antennas at Alice.
- As P increases, more power should be allocated to information transmission.
x-axis: power budget P. y-axis: optimal value of ϕ.

N_A: number of antennas at Alice.

- As N_A increases, more power should be allocated to information transmission.
Result: Ergodic Secrecy Capacity

![Graph showing secrecy capacity for different power budgets and antenna configurations.](image)

- **x-axis:** power budget P.
- **y-axis:** secrecy capacity $\mathbb{E}_{h,g}\{C(h) - C(g)\}$.
- **N_A:** number of antennas at Alice.

- Equal power allocation works pretty well in all scenarios.
Extended Problems

- Multiple Eves.
- Imperfect Channel Knowledge.
Multiple Colluding Eves

- \(N_E \): the total number of "Eves".
- The number of antennas at Alice must be larger than the number of Eves.
Result: Optimal Power Allocation

- x-axis: power budget P. y-axis: optimal value of ϕ.
- N_E: total number of Eves.
 - As N_E increases, more power should be allocated to generate artificial noise.
In practice, Bob cannot estimate h with no error.

- $h = \hat{h} + \tilde{h}$, where \hat{h} is the estimated channel at Bob.
- With a reliable feedback link, Alice also knows \hat{h}.
In practice, Bob cannot estimate \mathbf{h} with no error.

- $\mathbf{h} = \hat{\mathbf{h}} + \tilde{\mathbf{h}}$, where $\hat{\mathbf{h}}$ is the estimated channel at Bob.
- With a reliable feedback link, Alice also knows $\hat{\mathbf{h}}$.
- The information signal is transmitted into $\hat{\mathbf{h}}$ and the artificial noise is transmitted into the subspace orthogonal to $\hat{\mathbf{h}}$.
Result: Optimal Power Allocation

x-axis: power budget P. y-axis: optimal value of ϕ.

N_A: number of antennas at Alice.

- As the channel estimation error increases, more power should be allocated to generate artificial noise.
Conclusions

- The use of artificial noise by Alice makes secrecy communication possible even without the knowledge of Eve’s channel.
Conclusions

• The use of artificial noise by Alice makes secrecy communication possible even without the knowledge of Eve’s channel.

• For a single Eve, Alice should use equal amount of power for generating the artificial noise and transmitting the information.

• For multiple colluding Eves, Alice should use more power to generate the artificial noise and less power to transmit the information.
Conclusions

- The use of artificial noise by Alice makes secrecy communication possible even without the knowledge of Eve’s channel.
- For a single Eve, Alice should use equal amount of power for generating the artificial noise and transmitting the information.
- For multiple colluding Eves, Alice should use more power to generate the artificial noise and less power to transmit the information.
Conclusions

- The use of artificial noise by Alice makes secrecy communication possible even without the knowledge of Eve’s channel.
- For a single Eve, Alice should use equal amount of power for generating the artificial noise and transmitting the information.
- For multiple colluding Eves, Alice should use more power to generate the artificial noise and less power to transmit the information.
- When practical channel estimation is considered, Alice should use more power to generate the artificial noise as the channel estimation error increases.

Thank you very much for your attention!