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m’ The Beautiful World of loT?

= Latest loT news:
= 09-2014: IoT — Major players agree on goals, but little else

= 12-2014: New Hacker-Friendly search engine that lists vulnerable loT
devices (censys.io)

= 11-2015: Millions of 1oT Devices using the same
hard-coded crytpo-keys

= 09-2016: World’s largest 1Tbps DDoS Attack
launched from 152,000 hacked smart devices

= 10-2016: Largest botnets consists of
mostly loT devices

= 10-2016: 12-Year-Old SSH bug
exposes more than 2 million loT
devices

= Recently: Mirai botnet, WannaCry, etc
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m‘ Outline

2. Introduction
u What is all this about?

3. Background

m Intrusion Detection is Large Networks

4. Intrusion Detection using Replicator Neural Networks
= Detecting Anomalies in Network Flows
= Replicator Neural Networks

5. Evaluation
= Experiments and Results

6. Conclusion and Future Work
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Introduction:

What is all this about?

= Understanding the Title:
= Analyzing Flow-based Anomaly Intrusion Detection using replicator Neural Networks

= Analyzing Flow-based
= Purpose: analyze network data encoded as flows

= Enables: affordable analysis of massive traffic

= Anomaly Intrusion Detection
= Purpose: automatically detect deviations from normality

= Enables: identification of new attacks without user intervention

= using Replicator Neural Networks
= Purpose: classify

= Enables: unsupervised (and robust) identification of anomalous traffic
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Intrusion Detection in Large Networks

= Large networks are the new battle ground
= Botnets
= Coordinated Crowds
= Denial of Service attacks
= ... and all other coordinated attacks

= Network attacks affect the victim and the Internet infrastructure
= Disruption to the targets and the service providers
= Defensive mechanisms need to be further from the edge

= Large Networks are difficult to monitor
=" Thousands of heterogeneous devices
= Terabytes of data (every hour)
= Attacks are easily overlooked
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Intrusion Detection in Large Networks

= Detecting anomalies in large networks

= ML Requirements
1. Scalable detection

2. High accuracy (with low false
positives)

3. Work without supervision
(unsupervised)

4. Resilience to model poisoning
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Intrusion Detection in Large Networks

= Detecting anomalies in large networks

= Data Requirements

1. Detect away from the edge
= Detecting at the edge

= Detecting away from the edge

2. Reduce dimensionality of
network data
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Intrusion Detection in Large Networks

= Working with network data: Network Flows
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= Network Flows

nm-mmmm

21.65.71.124  110.45.78.12 51478

2 X 64.73.26.110 21.65.71.124 49652 80 56 1523
3 Y 110.45.78.12  64.73.26.110 58471 21 10,548 235
4 Y 21.65.71.124  110.45.78.12 49652 23 45,687 672

= Condense representation of network data
= Communication summary of two endpoints

06.03.2018 garcia@tk.tu-darmstadt.de 11



) TECHNISCHE
67, UNIVERSITAT
k. ~ DARMSTADT

m’ Intrusion Detection using Replicator Neural Networks
Detecting Anomalies in Network Flows

= Extracting features from network flows

n Time | Src IP Dst IP Src Port | Dst Port m

1 X 21.65.71.124 § §110.45.78.12 § 51478 80
64.73.6.110 21.65.1.124 49652 30

X
Y 45.78.12 64.7326.1)0 58471 21 10,548 235
Y 65.71.124 0.45.7§.12 49652 23 45,687 672
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Intrusion Detection using Replicator Neural Networks
Detecting Anomalies in Network Flows
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t={h}, h}, .., hL}

X ={HY H? ... HY}

= Anomaly Detection using the Subspace Method

= Principal Component Analysis (PCA) on the X set
= Compute all Principal Components

= Select components that define the:
= Normal subspace — Components capturing the most variance of X

= Abnormal subspace — Components not used for the normal subspace

= Disadvantages

" PCl1

PC2

PC3

PC4

Figenvalue 10563 | 0.2062 || 0.051T | 0.0213

Variance 79.11% | 15.44% || 03.83% | 01.60%

é“‘i"“‘“'a“’d 79.11% | 94.56% | 98.39% | 100%
ariance k

= PCA is inefficient with many dimensions

= Abnormal space prone to contamination
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m’ Intrusion Detection using Replicator Neural Networks
Replicator Neural Networks

t={h}, h}, .., hL} X ={H\, H? ... HV)

= Replicator Neural Networks
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m’ Evaluation
Experiments and Results
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= 4 different sets of experiments
1. Learning representations of network flows
2. Detecting anomalies in the training data
3. Detecting injected attacks

= Experimental setup
=  Dataset: MAWI lab
= 3 training days
B 1 validation day
=  Network flows exported every 10 seconds
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1. Learning representations of network flows
= Standard Replicator Neural Network with 5 layers
=" 50% dropout in layers 2 and 4
L2 oo e g proeee o oo P g 5
N o I F—waminatoss || QB[ — Training Day 1
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m’ Evaluation
Experiments and Results

2. Detecting anomalies in the training data
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3. Detecting injected attacks
= DDoS attack with 4 intensities
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m Conclusion and Future Work

= Replicator Neural Networks (RNNs)

= Effectively detect resource exhaustion attacks and network profiling
techniques

= Work in large and real-world backbone internet data
= Detect attacks in the training data as well as new (unseen) data
= No labeled data needed

= Future Work
= Test different autoencoder configurations (beyond RNNs)
= Add Gaussian noise to the inputs and other input transformation techniques
= Use network flows and meta-flow features
= Test other relevant deep learning techniques
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