

1 of 7

SECURITY MODEL FOR RESOURCE AVAILABILITY – SUBJECT AND OBJECT
TYPE ENFORCEMENT

Ole-Erik Hedenstad
Norwegian Defence Research Establishment

ABSTRACT

Confidentiality, integrity and availability are the three
basic aspects of information security. The purpose of the
paper is to refine the availability dimension.

In the context of security an object is the passive entity
to be protected. “Object” can refer to both an information
object and to a resource, e.g. the program (or service) that
retrieves the information and enables access to it. Thus, we
make a distinction between information and resource
availability.

We propose a new security model for resource
availability called “subject and object type enforcement”
(SOTE). The model can express policies for information
flow between resources of different administrative
domains. It controls the types of resources that are allowed
to interact. The ability to express the security requirements
and conditions a resource must fulfill, is also part of the
model. SOTE is a variation of type enforcement. The main
difference is that SOTE is a model for information flow
control instead of operating system access control.

Type enforcement is well suited for restricting
information flows. In particular type enforcements can
express intransitive (indirect) information flows. The
SOTE model can express such information flow policies at
a fine-grained level. This is a prerequisite for flexible and
secure information flow in heterogeneous environment
where the domains do not implement the same set of
security policies and security levels.

We also describe how multiple security models can be
combined in order to express a composite security policy
for information flow. We combine the classic multilevel
security models (Bell-LaPadula and Biba) with the SOTE
resource availability model.

1. INTRODUCTION
Confidentiality, integrity and availability are the three

basic aspects of information security. A concept for
multilevel security (MLS) that models the security
requirements as a multidimensional vector space with
these three basic aspects as axes, is proposed in [1]. The
work presented in this report has this multidimensional
MLS concept as basis.

Availability is the quality or state of being ready to be
used. It is a broad term that comprises many aspects. The
classic understanding is that availability is associated with
requirements on throughput, redundancy, backups etc. We
also include restrictions and conditions resources must
fulfill in order to be available.

In this paper we refine the availability dimension and
propose a new security model for resource availability. It
is computer resources that actually make information
objects available. These are resources like computers,
servers, programs, services and others. In addition
communication resources, e.g. routers and switches, are
necessary to enable access over communication systems.
We address the resource aspects in the new model called
“subject and object type enforcement” (SOTE). This
model can specify permitted information flows between
resources of different administrative domains.

SOTE is a variation of type enforcement [2]. The main
difference between SOTE and type enforcement is that
SOTE is a security model for information flow control
instead of operating system access control.

A formal definition of availability is [3]:
Let X be a set of entities and let I be a resource. Then I has
the property of availability with respect to X if all
members of X can access I.

We make a distinction between information and
resource availability to reflect that “object” can refer to
both an information object and to a resource. An
information object can for example be a document, while a
resource can be a program (or service) that retrieves the
information object and enables access to it. Our definitions
of these two types of availability are:
− Information availability regulates the access to

information objects based on some availability criteria,
e.g. access to information is determined by the
information object’s type.

− Resource availability regulates the access to resources
in order to get timely, reliable and secure access to
services and data. E.g. interactions between resources
are regulated by the resources’ types.

We have developed a data model that describes subjects,
objects and other relevant security entities, using the
Unified Modeling Language (UML) notation [4]. The
definitions from the Compositional Multiple Policy

Reprinted from Proceedings of the 2009 IEEE MILCOM Conference. Boston, October 2009

2 of 7

Security Model [5] have been used as basis for our model.

The model elements that are relevant for objects are
depicted in Figure 1. We define an administrative domain
to be a domain consisting of computer systems that
implements the same set of security policies and security
levels. This means that we have a homogeneous security
environment within an administrative domain. Further, an
object belongs to one (and only one) administrative
domain. The object has a label, called security label. And
the object refers to an information object of some type, a
resource of some type or both.

class Meta model - Object and label

Object

Object resource type

Adm. domain

Information type

Security label

C-label I-label
11

1..*

«Has security label»
1

1..*
«Refers to info
of type»

0..*

1..*

«Belongs to»
1

1..*
«Is a resource
of type»

0..1

Figure 1 The object and its associations

The idea is to use the SOTE security model together
with the classic multilevel security models (Bell-LaPadula
and Biba). Thus, we combine confidentiality and integrity
models with the SOTE resource availability model (section
4).

The Bell-LaPadula model describes a generic multilevel
confidentiality policy [6] that allows information flow
from low-confidentiality level to higher levels and
disallows flow in the opposite direction. The other classic
model, Biba, describes a generic multilevel integrity policy
[7] that allows information flow from high-integrity level
to lower levels. Figure 1 shows a label with both
confidentiality level (C-label) and integrity level (I-label).
Each of these labels consists of a policy identifier and a
level.

The Bell-LaPadula model may be extended with
categories. A category is a group of information objects
that have the same type, and a user is given access to a
category if the user has clearance for this category.
Winjum [1] proposes linearly ordered availability levels as
an alternative to categories. The rationale is that in many
applications and scenarios, the rich class structure
supported by the category structure gives unnecessary
overhead. The availability level of an information object is
given by an A-label.

The paper is organized as follows. The next section
gives the rationale and assumptions for the new model.
The proposed model for resource availability is presented
in the following section. We then describe how multiple

security models can be combined in order to express a
composite security policy for information exchange. This
section also gives examples. Then related work follows.
The conclusions are summarized in the final section.

2. RATIONALE
The basic idea of the SOTE security model is to define

the permitted information flows between resources of
different types, typically between types of program
components. The administrative domain is part of the
model in order to express information flows between
resources belonging to different administrative domains.

The setting is that computer systems of different
administrative domains, inclusive your own, are connected
to a common communication network. Thus, an
administrative domain will not control all the resources
connected to this network, as a lot of the resources belong
to other administrative domains. Further, the domains
implement security policies with different integrity levels
and different confidentiality levels. This means that we
have heterogeneous administrative domains. One domain
may implement a multilevel security policy comprising all
integrity levels (from low to high) and all confidentiality
levels (from unclassified to secret). A second domain may
implement a security policy comprising one integrity level
(low) and one confidentiality level (unclassified). And a
third domain may implement a policy comprising two
integrity levels and one single confidentiality level
(restricted). In such heterogeneous environments the
domains have requirements to control and confine the
interaction with resources of the other domains.

One special case is that a domain does not allow
interaction with any of the computers of one of the other
domains. In most cases a domain may allow interaction
with some of the application programs, some of the
services and/or some of the computers of the other
domains. Then the domain must be able to express which
interactions are permitted at a fine-grained level. The
service registry, one of the basic elements of Service
Oriented Architecture (SOA), is an example of a service
where fine-grained control is needed. As the registry
contains detailed information about the service providers
of the domain it belongs to, the domain may want to put
restrictions on who are allowed to access the registry. For
example, the policy could be that only a subset of other
domains is allowed to interact with the registry, while the
rest is denied.

In addition, a domain may require that the computers
and programs satisfy some conditions in order to allow
interaction. For instance the domain might require that
program components of a specific domain has been
certified and comply with certain assurance measures, e.g.
an evaluation assurance level defined in [8].

3 of 7

Type enforcement is well suited for restricting

information flows, and these restrictions can be flexibly
tailored to support the principle of least privilege. In
addition, the strength of type enforcements is that it can
express intransitive (indirect) information flows. The
SOTE model can express such information flow policies at
a fine-grained level. This is a prerequisite for flexible and
secure information flow in heterogeneous environment
where the domains do not implement the same set of
security policies and security levels.

TRANSITIVE INFORMATION FLOWS
The classic MLS models (Bell-LaPadula and Biba) may

express transitive information flows, i.e. direct information
flow from the source to the recipient. An example of
transitive flows is shown as a directed graph in Figure 2
(a). Nodes in the graph represent security domains and
arrows (directed edges) indicate the direct information
flows that are allowed. The figure shows conventional
information flow between the confidentiality classification
levels in the US.

Top Secret

Secret

Confidential

Unclassified

(a) (b)

Local DB

Service

Remote

Figure 2 (a) Transitive; (b) Intransitive information flow

However, not all security issues can be addressed by
transitive flow expressions. Rushby [9] states that channel-
control policies seem able to specify a number of security
concerns that are beyond the reach of standard security
modelling techniques.

An example channel control policy is given by the
directed graph in Figure 2 (b). It shows external access to
information located in a local database. The flows
represented by the arrows (the directed edges) are
intransitive because, although information can flow from
the database (local DB) to the remote program (called
remote), it cannot do that directly. The information has to
go through the mediation of the local service (called
service) that provides remote access. The security policy
specified by this graph is that the only channels for
information flow from the local database to the remote
recipients must be those through the serial connection of
the service and the remote components.

ASSUMPTIONS
Based on the definitions and descriptions given above,

we assume:
− Computers of the different administrative domains are

connected to a common network.
− There is a homogeneous security environment within

an administrative domain, i.e. the computer systems
within a domain implement the same set of security
policies and levels.

− The cooperating parties (administrative domains)
implement a common set of confidentiality, integrity
and information availability policies, e.g. a set of
NATO policies. However, the implemented security
levels may vary from domain to domain.

− The SOTE resource availability policy is implemented
in all actual administrative domains.

− Trust between cooperating parties has been
established, and the cooperating parties have
knowledge of the security policies and levels of the
other part.

− Confidentiality, integrity and availability are
independent security properties.

3. THE SOTE PROPOSAL
Our proposal is to control information flow by defining

the permitted interactions between types of subject
resources and object resources. Also the permitted
interactions between two types of subject resources can be
defined.
The SOTE model defines permissions at the type level:
− A subject resource type element is associated with

each subject instance.
− An object resource type element is associated with

each object instance.
− An administrative domain element is also associated

with each instance of object and subject.
− Permitted subject-to-object interactions are specified

for pairs of subject resource type and object resource
type (e.g. in a table where each row represents a
subject resource type and each column represents an
object resource type). The permission modes are none,
read-related or write-related. Examples of read-related
modes are read, execute and getattribute. Examples of
write-related modes are write, append, create, delete
and setattribute.

− Permitted subject-to-subject interactions are specified
for pairs of subject resource types.

− A set of security requirements and conditions can be
associated with a subject resource type, an object
resource type and associations between resources. See
section below.

4 of 7

A formal definition of the associations between the

model elements are given in the UML representation of
SOTE, as illustrated in Figure 3. The UML model
specifies the multiplicity of the model elements attached to
each end of an association. The multiplicity gives the
range of the set of instances that can be active in the
association. For example, in the one-to-many association
«Is a resource of type» only one subject resource type can
be assigned to a subject instance. And one or many,
denoted by (1..*), subject instances can be assigned to the
same subject resource type.

class Meta model - Resource availability

Subject

Adm. domain

Subject
resource type

Object

Object
resource type

Subject-to-object
permission

- P: Permission

Subject-to-subject permission

1..* «Resource type permission» 1..*1..*

«Resource type permission»

1..*

1..*
«Belongs
to»

1

1..*
«Is a resource
of type»

0..1

1..*

«Is a resource
of type»

1

1..*
«Belongs
to»

1

Figure 3 Resource availability – the SOTE model

The SOTE model uses UML generalizations to define a
resource type hierarchy, both for subject and object
resource types. A generalization is a relationship in which
one model element (the subclass) is based on another
element (the superclass). Generalized types will reduce
complexity and ease the specification and administration
of a SOTE policy, and should be used.

The model can also express intransitive information
flow policies. A domain may for example require that
remote access to a local database must go through a
specific program or service. This means the domain do not
allow remote programs to access the local database
directly; see Figure 2 (b). Such a policy can be formulated
by a combination of subject-to-object permissions (e.g.
between the service and local database) and subject-to-
subject permissions (e.g. between the remote program and
the service).

Different approaches can be used to actually configure a
SOTE policy database. One is the classic table-oriented
approach. Another approach is to use a high-level policy
language like the domain-type enforcement language
(DTEL) [2]. Also the eXtensible Access Control Markup
Language (XACML) [10] may be used. XACML defines a
policy language for expressing policies.

CONDITIONS AND REQUIREMENTS
The SOTE model can express conditions a resource

must fulfill in order to allow interaction. One condition
can be that a program component has been certified and
complies with certain assurance criteria, e.g. an evaluation
assurance level (EAL) defined in Common Criteria [8].
Another condition can be to check the integrity of the
program component, i.e. to verify the program
component’s authenticity with respect to origin and
content. A domain may also require that the environment
of the program component (such as hardware and
operating systems) is verified. These examples of
conditions are found as constraints in the SOTE model
shown in Figure 4.

In addition the model can express security related QoS
(Quality of service) requirements on object resources. One
such requirement can be that an object must be able to
resist Denial of Service (DoS) attacks (specified by some
availability measure). This requirement, called DoS
resistance, is expressed as a responsibility of the object
resource type in Figure 4.

We use UML constraints to specify conditions and
UML responsibilities to specify requirements on
resources. A UML constraint [4] is an assertion that
indicates a restriction that must be satisfied. Further, a
responsibility is a contract or obligation of a model
element in its relationship to other elements. We propose
to use the formal language OCL - Object Constraint
Language - [11] to specify the conditions (invariants and
pre-conditions).

class Meta model - Resource availability with reqs/cond

Subject

Adm. domain

Subject resource type

constraints
{Evaluation assurance}
{Integrity check of program}
{Environment verification}

Object

Object resource type

responsibilities
DoS resistance

constraints
{Evaluation assurance}
{Integrity check of program}
{Environment verification}

Subject-to-object
permission

- P: Permission

1..*

«Resource type
permission»

1..*

11

1..*
«Belongs«Belongs
to»to»1..*

1..*1..*

«Is a resource«Is a resource of type»of type»

0..1
1

Figure 4 SOTE with security requirements and conditions

5 of 7

4. COMPOSITE POLICY FOR CROSS-DOMAIN

INFORMATION FLOW
This section describes how multiple security models can

be combined in order to express a composite security
policy for information flow between administrative
domains. We will combine the Bell-LaPadula
confidentiality model and the Biba integrity model with
the SOTE resource availability model.

CROSS-DOMAIN MULTILEVEL PERMISSIONS
First we need to supplement the UML security model

with cross-domain multilevel permissions. Each domain
will control the cross-domain information flow by
specifying the permitted security policies and associated
security levels towards other domains. These permissions
can be specified by three set of security labels (a label
consists of both policy identifier and level):
− I-labels: the permitted set of integrity labels
− A-labels: the permitted set of availability labels
− C-labels: the permitted set of confidentiality labels

Each set of labels for cross-domain permissions are
specified as a UML constraint in the UML model. We
assume that trust between cooperating parties
(administrative domains) has been established. Thus, the
policy permission will explicitly specify the security
policies and security levels of the other domain that own
domain trust.

Figure 5 gives an example of a composite information
flow policy for own domain towards domain D1.

class Example - Composite policy

R1: A resource type

S1: A subject

R2: A resource type

O1: An object

D1: Another domain Own domain

Access
label

Security
label

C-label of
subject

C-label of
object

I-label of
subject

I-label of
object

Subject-to-object permission
- P: Permission = read-related

Confidentiality labels

Integrity labels

«Belongs to»

«Is a resource
of type»

«Subject-label
mapping»

«Belongs to»

«Multilevel permissions»

«Is a resource
of type»

«Has security
label»

«Multilevel permissions»

Figure 5 Composite policy for information flow

Own administrative domain, called own in Figure 5, is
our fixed place. The subject instance S1 of domain D1
requests read access to an object instance O1 of own
domain. The integrity labels element of Figure 5 gives the
permitted cross-domain integrity policies and levels, and
the confidentiality labels element of the same figure gives
the permitted cross-domain confidentiality policies and
levels. In this example we assume the Biba integrity policy
and the Bell-LaPadula confidentiality policy.

Now the policy enforcement component of own domain
can give subject S1 read access to O1 if, and only if,
access is permitted in all three dimensions.
− The integrity label of subject S1 is inspected to check

that it is a member of the permitted set of integrity
labels (specified in the integrity labels element). If the
integrity label is accepted, the rules of the Biba model
are used to decide whether S1 can be given read access
to object O1 or not.

− The confidentiality label of subject S1 is inspected to
check that it is a member of the permitted set of
confidentiality labels (specified in the confidentiality
labels element). If accepted, the Bell-LaPadula rules
are used to decide whether S1 can be given read access
to object O1 or not.

− Resource availability: The SOTE configuration
database is looked-up to check whether the S1 and O1
resources are allowed to interact or not.

EXAMPLE OF INFORMATION FLOW
An example of information flow between a tactical and a

combat administrative domain is given in Figure 6. C is
the set of confidentiality levels and I is the set of integrity
levels, whereas A gives the availability policy in force.

Position report

Program
x

Resource name: pos_rep_service
Type: rep_service_type
I=4

Resource name: own_sit_rep
Type: storage_service_type

Multilevel security
policy (C & I).

C = {Unclass, .. ,Secret}
I = {1, .. ,7}
A = SOTE configuration

Own: adm. domain tactical
Single level confidentiality,

multi level integrity.
C = Restricted
I = {3, 4}
A = SOTE configuration

D1: adm. domain combat

Resource name: situation_DB
Type: local_DB_type

Command Post Own

Service
y

Local DB
z

Service
w

Figure 6 Information flow between tactical and combat domains

The tactical domain is own and the combat domain is
D1. Own domain has multilevel policies for both

6 of 7

confidentiality and integrity, whereas domain D1 has a
single level confidentiality policy and a multilevel
integrity policy (two levels). Both domains implement the
SOTE resource availability policy.

Our fixed place is at the own domain. We assume that
own domain allows cross-domain information exchange
towards domain D1 at two integrity levels, I = {3, 4}, and
at the restricted confidentiality level.

In Figure 6 the military vehicles of domain D1 report
their positions to a resource called service y in own
domain. The integrity of these reports is handled according
to the cross-domain integrity policy, which prevents that
reports from the vehicles (reports are at integrity level 4)
are mixed with information at higher integrity levels.

We assume that the cross-domain resource availability
policy requires that position reports from D1 to the local
database (z) go via service y. Direct reporting from
domain D1 to the local database is not allowed in order to
protect the local database. This information flow policy
can be enforced as follows:
− The SOTE database is configured to allow interactions

between resources of type rep_service_type (the
resource type of program x) and resources of type
storage_service_type (the resource type of service y).

− The SOTE database is also configured to allow
interactions between resources of type
storage_service_type and resource of type
local_DB_type (the resource type of z).

− The policy enforcement component of own domain is
responsible for verifying that program x belongs to
domain D1 and that it is a resource of type
rep_service_type before access to service y can be
given.

Also a third resource (service w) exists in the tactical
domain, see Figure 6. Service w is of type
local_domain_only and interactions between resources of
this type and rep_service_type are not allowed. Thus,
service w will not be available to program x.

Further, we assume that the resource availability policy
between the two domains mandates that the program
components comply with one of the assurance levels
defined in Common Criteria [8]. In our example this
affects program x, service y and local DB z. We also
assume that the cross-domain policy requires that
authenticity of the information (origin and content) is
protected on communication channels between program x
and the local database. Thus, the authenticity of the
information will be protected both when sent on
communication networks and when processed by program
components. In addition the cross-domain policy may
require confidentiality protection of the information
exchanged.

5. RELATED WORK
Type enforcement is a table-oriented form of access

control originally proposed by Boebert and Kain [12]. An
enhanced version of type enforcements is Domain and
Type Enforcement (DTE) [2]. DTE is also included in the
“Multi-Policy Views Security Model (MPVSM), which is
a hybrid security model that combines DTE with
confidentiality, integrity and RBAC (Role-based access
control) models [5].

The type enforcement model is well suited for restricting
information flows [2]. In this model, an invariant access
control attribute called a domain1 is associated with each
subject, and another attribute called a type is associated
with each information object. Further, a global table, the
Domain Definition Table (DDT), represents allowed
interactions between domains and types. Each row of the
DDT represents a domain, and each column represents a
type. Subject-to-subject access control is based on a
second table, the Domain Interaction Table (DIT), which
relates domains to domains.

Suitably configured, type enforcement partitions a
system according to the principle of least privilege, which
grants each subject only those access rights needed to
perform its assigned functions [13].

An enhanced version of type enforcements is Domain
and Type Enforcement (DTE). Two techniques
distinguish DTE and simple type enforcement. These are
[2]:
− DTE policies are expressed in a high-level language

that includes file security attributes associations as
well as other access control information

− During system execution, DTE file security attributes
are maintained in a runtime DTE policy database thus
removing the need for security-specific low-level data
formats.

Sherman [14] describes how DTE has been integrated
with network services in a UNIX-based research
prototype. The DTE-based prototype can enforce
restrictions on access to information in a networked
environment. This is accomplished by assigning processes
to different domains and assigning appropriate data types
to the objects they access via network-based interprocess
communication (IPC). The prototype uses DTE to control
which pairs of processes can communicate via IPC and
which types of information each pair can exchange.

The type enforcement security model is implemented in
Security-Enhanced Linux (SELinux) [15]. In SELinux a
security context (which includes type) is assigned to

1 Domain in the context of type enforcement is quite different from the
administrative domain term used elsewhere in the report.

7 of 7

network resources as well as other objects. This allows for
specifying the network access policy for a computer.
However, the network access policy cannot express
generalized types of remote network processes (services).
Only specific network services (ports) can be expressed.

6. SUMMARY
A new security model for resource availability has been

proposed. The model, called “subject and object type
enforcement” (SOTE), can express policies for
information flow between resources of different
administrative domains. It controls the types of resources
that are allowed to interact. The ability to express the
security requirements (e.g. security related quality of
service requirements) and conditions a resource must
fulfill, is also part of the model. SOTE is a variation of
type enforcement. The main difference is that SOTE is a
model for information flow control instead of operating
system access control.

Type enforcement is well suited for restricting
information flows. In particular type enforcements can
express intransitive (indirect) information flows. The
SOTE model can express such information flow policies at
a fine-grained level. This is a prerequisite for flexible and
secure information flow in heterogeneous environment
where the domains do not implement the same set of
security policies and security levels.

We have described how multiple security models can be
combined in order to express a composite security policy
for information flow. The classic multilevel security
models (Biba and Bell-LaPadula) have been be combined
with the SOTE resource availability model. Also a data
model that describes SOTE and related security elements,
using the Unified Modeling Language (UML) notation,
has been presented.

REFERENCES

 [1] Winjum E. and Mølmann B. K. (2008), "A

multidimensional approach to multilevel security",
Information Management & Computer Security, vol. 16,
no. 5, pp. 436-448.

 [2] Badger L., Sterne D. F., Sherman D. L., Walker K. M.,

and Haghighat S. A. (1995), "Practical Domain and Type
Enforcement for UNIX", IEEE Symposium on Security
and Privacy, p. 66.

 [3] Bishop M. (2003), Computer Security: Art and Science,
Addison-Wesley Professional.

 [4] OMG UML (2009), "Unified Modeling Language",
www.uml.org.

 [5] Xia L., Huang W., and Huang H. (2007), "A
Compositional Multiple Policies Operating System
Security Model", 8th International Workshop, WISA
2007, LNCS 4867, pp. 291-302.

 [6] Bell D. E. and La Padula L. J. (1975), "Secure Computer
Systems: Mathematical Foundations", Technical Report
MTR-2547, Mitre Corporation, Bedford, MA.

 [7] Biba K. J. (1977), "Integrity considerations for secure
computer systems", Technical Report MTR-3153, Mitre
Corporation, Bedford, MA.

 [8] CC (2007), "Common Criteria for Information
Technology Security Evaluation (v3.1)", CCMB-2007-
09.

 [9] Rushby J. (1992), "Noninterference, Transitivity, and
Channel-control Security Policies", SRI International,
Computer Science Laboratory.

 [10] Moses T. (2005), "extensible access control markup
language (xacml) version 2.0", Oasis Standard, vol.
200502.

 [11] OMG OCL (2006), "Object Constraint Language
Specification (v2.0)", (May 2006).

 [12] Boebert W. E. and Kain R. Y. (1985), "A Practical
Alternative to Hierarchical Integrity Policies", Proc.of 8th
National Computer Security Conference, Gaithersburg,
MD, pp. 18-27.

 [13] Walker K. M., Sterne D. F., Badger M. L., Petkac M. J.,
Sherman D. L., and Oostendorp K. A. (1996), "Confining
root programs with domain and type enforcement
(DTE)", Proceedings of the 6th conference on USENIX
Security Symposium.

 [14] Sherman D. L., Sterne D. F., Badger L., Murphy S. L.,
Walker K. M., and Haghighat S. A. (1995), "Controlling
network communication with domain and type
enforcement", Proceedings of the 18th National
Information Systems Security Conference.

 [15] NSA SELinux (2009), "Security-Enhanced Linux",
www.nsa.gov/research/selinux.

http://www.uml.org/
http://www.nsa.gov/research/selinux

	1. INTRODUCTION
	2. RATIONALE
	TRANSITIVE INFORMATION FLOWS
	ASSUMPTIONS

	3. THE SOTE PROPOSAL
	CONDITIONS AND REQUIREMENTS

	4. COMPOSITE POLICY FOR CROSS-DOMAIN INFORMATION FLOW
	CROSS-DOMAIN MULTILEVEL PERMISSIONS
	EXAMPLE OF INFORMATION FLOW

	5. RELATED WORK
	6. SUMMARY

