Difference between revisions of "AFSecurity Seminar"

From mn/ifi/AFSecurity
Jump to: navigation, search
 
(253 intermediate revisions by the same user not shown)
Line 1: Line 1:
== PKI for Id Cards ==
+
== ''Confidential Computing'' ==
  
'''DATE:''' Thursday 6 October 2016. 14:00h
+
{| border="0" cellpadding="1" cellspacing="1" width="100%"
 +
|-
 +
| '''TIME:'''&nbsp; Friday 1 December 2023, 14:00h<br />'''PLACE:'''&nbsp;  Auditorium Smalltalk, 1st floor, IFI, UiO, Ole Johan Dahls hus, Gaustadalleen 23b, Oslo. [https://kart.finn.no/?lng=10.71782&lat=59.94342&zoom=17&mapType=normap&markers=10.71782,59.94342,r,Gaustadall%C3%A9en+23B See map].<br />
 +
All interested are welcome. Coffee and snaks served.<br />
 +
<br />'''AGENDA:'''<br />
 +
14:00h Welcome to AFSecurity at UiO <br />
 +
14:15h Invited talk<br />
 +
* TITLE: ''Confidential Computing'' &nbsp;
 +
* SPEAKER: Ijlal Loutfi, Canonical 
 +
| <center>[[File:photo-Ijlal-Loutfi.png|90px|link=https://www.linkedin.com/in/ijlal-loutfi-785125234/]]</center>
 +
| <center>[[File:logo-Canonical.png|320px|link=https://canonical.com/]]</center>
 +
|}
 +
* ABSTRACT:<br />Protecting data in-use has long been a challenging open problem in computer science. While being computed on in cleartext in system memory, your data stored in RAM is exposed to the millions lines of code that make up the underlying platform’s privileged system software. By design, a malicious firmware, or compromised operating system can easily leak your data, or compromise its integrity.<br /><br />Confidential computing is a privacy-enhancing system security primitive which addresses this challenge head-on, by running your security-sensitive processes in isolated execution environments whose security guarantees can be remotely attested. Its recent generations, such as Intel SGX, Intel TDX and AMD SEV SNP, make use of newer CPU hardware and architectural extensions, such as the AES-128 hardware encryption engine which encrypts RAM memory pages in real-time. Hardware with these capabilities is already available in the market, and public cloud providers have been one of its early adopters.<br /><br />In this presentation, we first visit the history of confidential computing, then study the technical system primitives which allow us to implement both isolation and attestation. We also explore the different silicon implementations of confidential computing, where they are deployed today, and for which uses cases.
  
'''LOCATION:'''&nbsp; Kristen Nygaards sal (room 5370), Ole Johan Dahl's House.
+
<br />15:00h Discussion<br />
  
'''AGENDA:'''
+
'''BIO:''' &nbsp; Dr. Ijlal Loutfi is the product lead for Ubuntu Security at Canonical. She has a PhD in cyber security from the University of Oslo, where she worked on Trusted Execution Environments and Identity Management.
  
14:00h Welcome at IFI
+
 
 +
<br /><br />
  
14:15h Talk: '' PKIs for Norwegian Passports and National Id Cards''
+
{| border="0" cellpadding="1" cellspacing="1" width="90%"
 
+
|-
15:00h Discussion
+
| [[File:AFSecurity-small.png|250px]]
 
+
| AF''Security'' is organised by UiO [https://www.mn.uio.no/ifi/forskning/grupper/sec/ Digital Security].
'''SPEAKER:''' Tage Stabell-Kulø (Unibridge)
+
| [[File:logo-uio-english-2022.png|250px|link=https://www.mn.uio.no/]]
 
+
| [[File:Sec-light-360.png|150px|link=https://www.mn.uio.no/ifi/english/research/groups/sec/]]
'''ABSTRACT:'''
+
|}
The public information stored in the chip of Norwegian passports and National ID cards is digitally signed by Norwegian authorities. The public key is self-signed key which is also part of a global PKI (Public-Key Infrastructure). The confidential information store on the chip, which includes fingerprints, is protected bu keys managed under another PKI. Furthermore, the cryptographic protocols used in the communication between the chip and the terminal reader are based on the use of temporary ephemeral public keys.
 
 
 
This talk describes the two PKIs and gives a brief introduction to temporary asymmetrical keys.
 
 
 
'''SPEAKER BIO:'''
 
Dr. Tage Stabell-Kulo has since 1992 been interested in the use of public keys, their potential, and their limitations. He holds a Cand.Scient. degree in distributed systems from the University of Tromsø, and Doctoral degree from the University of Twente, Netherlands. His PGP key (71FBD469) is from June 1994.
 

Latest revision as of 15:30, 14 November 2023

Confidential Computing

TIME:  Friday 1 December 2023, 14:00h
PLACE:  Auditorium Smalltalk, 1st floor, IFI, UiO, Ole Johan Dahls hus, Gaustadalleen 23b, Oslo. See map.

All interested are welcome. Coffee and snaks served.

AGENDA:
14:00h Welcome to AFSecurity at UiO
14:15h Invited talk

  • TITLE: Confidential Computing  
  • SPEAKER: Ijlal Loutfi, Canonical
Photo-Ijlal-Loutfi.png
Logo-Canonical.png
  • ABSTRACT:
    Protecting data in-use has long been a challenging open problem in computer science. While being computed on in cleartext in system memory, your data stored in RAM is exposed to the millions lines of code that make up the underlying platform’s privileged system software. By design, a malicious firmware, or compromised operating system can easily leak your data, or compromise its integrity.

    Confidential computing is a privacy-enhancing system security primitive which addresses this challenge head-on, by running your security-sensitive processes in isolated execution environments whose security guarantees can be remotely attested. Its recent generations, such as Intel SGX, Intel TDX and AMD SEV SNP, make use of newer CPU hardware and architectural extensions, such as the AES-128 hardware encryption engine which encrypts RAM memory pages in real-time. Hardware with these capabilities is already available in the market, and public cloud providers have been one of its early adopters.

    In this presentation, we first visit the history of confidential computing, then study the technical system primitives which allow us to implement both isolation and attestation. We also explore the different silicon implementations of confidential computing, where they are deployed today, and for which uses cases.


15:00h Discussion

BIO:   Dr. Ijlal Loutfi is the product lead for Ubuntu Security at Canonical. She has a PhD in cyber security from the University of Oslo, where she worked on Trusted Execution Environments and Identity Management.




AFSecurity-small.png AFSecurity is organised by UiO Digital Security. Logo-uio-english-2022.png Sec-light-360.png