Difference between revisions of "Software and resources"

From mn.kjemi.vaspwiki
Jump to: navigation, search
m
m
Line 21: Line 21:
 
[http://abulafia.mt.ic.ac.uk/shannon/ptable.php abulafia.mt.ic.ac.uk/shannon/]
 
[http://abulafia.mt.ic.ac.uk/shannon/ptable.php abulafia.mt.ic.ac.uk/shannon/]
  
R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. 1976 (A32) 751-767
+
Reference <ref> R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. 1976 (A32) 751-767 </ref>
  
 
===Binding energies of molecules===
 
===Binding energies of molecules===
Line 144: Line 144:
  
 
Python package dedicated to the study of point defects in solids. Can be used to calculate the correction energy due to electrostatic finite-size-effects in charged supercells, defect formation energies and transition levels, and defects concentrations.
 
Python package dedicated to the study of point defects in solids. Can be used to calculate the correction energy due to electrostatic finite-size-effects in charged supercells, defect formation energies and transition levels, and defects concentrations.
 +
 +
==References==
 +
<references />

Revision as of 14:11, 22 October 2021

Software and resources

Structure and crystallography

ICSD database

icsd.fiz-karlsruhe.de/

Automatic login through EZproxy (www.ub.uio.no/english/using/remote-access.html).

Materials project

www.materialsproject.org

Contains structures optimized by DFT that can be downloaded in several formats including .cif or POSCAR. Choose 'Conventional Standard' CIF.

Login with a Google account (available with UiO username www.uio.no/english/services/it/store-collaborate/gsuite/).

International Tables for Crystallography

it.iucr.org

Complete overview of space-group symmetry and more.

Shannon Ionic Radii

abulafia.mt.ic.ac.uk/shannon/

Reference [1]

Binding energies of molecules

Todo: Table of binding energies with reference (e.g., NIST)

Catalysis

Catalysis Hub

www.catalysis-hub.org

Database of reaction energies and barriers from DFT calculations.

Visualization

VESTA

jp-minerals.org/vesta/en/ (Windows, macOS, Linux)

View periodic structures, charge densities and more.

Recommended settings for improved figures

Objects > Properties > Atoms/Bonds/Polyhedra
Shininess (%): 1 

View > Overall Appearance...
Ambient: 10
Diffuse: 70

Avogadro

avogadro.cc (Windows, macOS, Linux)

View and edit molecular structures and optimize molecular geometry through molecular mechanics.

Diamond

www.crystalimpact.com/diamond/ (Windows: Licence)

View and edit periodic and molecular structures.

VMD

www.ks.uiuc.edu/Research/vmd/ (Windows, macOS, Linux)

View and animate structures from molecular dynamics simulations.

P4vasp

github.com/orest-d/p4vasp (macOS, Linux)

Visualizing periodic structures, density of states and band structures.

Packages

Spyder

www.spyder-ide.org (Windows, macOS, Linux)

Scientific python developer environment.

Atomic Simulation Environment (ASE)

wiki.fysik.dtu.dk/ase/ (Module available on Saga)

Set of tools and Python modules for setting up, manipulating, running, visualizing and analyzing atomistic simulations.

Example of a script for generating an (1 1 1) surface slab of palladium

#!/opt/local/bin/python
from ase.io import read
from ase.io import write
from ase.build import fcc111
from ase.build import fcc100
from ase.build import fcc111_root
slab = fcc111_root('Pd', 3, size=(1,2,7), a=3.9438731474981594, vacuum=5.0)
write('Pd-111-gb.cif', slab, 'cif')

VASPKIT

vaspkit.com (macOS, Linux)

Generate input files and data processing.

CatMAP

catmap.readthedocs.io/ (macOS, Linux)

Create microkinetic models.

Phonopy and Phono3py

phonopy.github.io/phonopy/

Phonopy is an open source package for phonon calculations at harmonic and quasi-harmonic levels. Phono3py is another open source package for phonon-phonon interaction and lattice thermal conductivity calculations.

TDEP

ollehellman.github.io

Extract force constants, phonon dispersion relations, thermal conductivity, and generate special quasirandom structures (SQS)

Available on Saga (/cluster/shared/tdep/bin). Use the following modules

module purge
module load Anaconda3/2019.03
module load intel/2018b
module load imkl/2018.3.222-iimpi-2018b
module load HDF5/1.10.2-intel-2018b

Generate SQS supercell from from a unit cell POSCAR file named 'infile.ucposcar'

Example of 'infile.ucposcar' for a A-site doped SrTiO3 unit cell where the disordered site is designated 'ALLOY' (2 elements: 52% Sr and 48% Ca)

 Sr1 Ti1 O3
 1.0
 3.945130 0.000000 0.000000
 0.000000 3.945130 0.000000
 0.000000 0.000000 3.945130
 ALLOY Ti O
 1 1 3
 direct
 0.000000 0.000000 0.000000 2 Sr 0.52 Ca 0.48
 0.500000 0.500000 0.500000
 0.500000 0.000000 0.500000
 0.500000 0.500000 0.000000
 0.000000 0.500000 0.500000

Generate 2x2x2 SQS supercells (five supercells will be generated outfile.sqs_001-005)

generate_structure -d 2 2 2

Spinney

spinney.readthedocs.io/

Python package dedicated to the study of point defects in solids. Can be used to calculate the correction energy due to electrostatic finite-size-effects in charged supercells, defect formation energies and transition levels, and defects concentrations.

References

  1. R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. 1976 (A32) 751-767