

CINCH (Contract Number: FP7-CA-249690) DELIVERABLE D1.4

Report listing and grouping the available textbooks of nuclear chemistry

Lead Beneficiary: CTU

 Due date of Deliverable: M33
 Finalised on: 20/01/2013

 Authors:
 Mojmír Němec, Jan John, Václav Čuba
 Approved by Coordinator

 For the Lead Beneficiary
 Reviewed by Workpackage Leader
 Approved by Coordinator

 Mojmír Němec
 Jukka Lehto
 Jan John

 Mojmír Němec
 Jukka Lehto
 Jan John

 Mojmír Němec
 Mutha Mathematica
 Mutha Mathematica

 Mojmír Němec
 Jukka Lehto
 Jan John

Start date of project: **01/02/2010** Project Coordinator: Project Coordinator Organisation:

Jan John CTU in Prague Duration: 36 Months

Revision: (0)

Project co-funded by the European Commission under the Euratom Research and Training Programme on Nuclear Energy within the Seventh Framework Programme		
Dissemination Level		
PU	Public	X
RE	Restricted to a group specified by the partners of the CINCH project	
CO	Confidential, only for partners of the CINCH project	

EXECUTIVE SUMMARY

Deliverable 1.4 has been created as a comprehensive list of textbooks, university textbooks and other teaching aids that are used in teaching all the topics within nuclear chemistry at different educational levels. The data were summarized from the questionnaire forms collected during the survey of nuclear- and radiochemistry curricula in the European universities (see Deliverable 1.1). This survey covered teaching materials from 26 universities in 19 countries. The list of teaching materials was created to be used as a "living document", which would be uploaded to the CINCH web page for general use. All interested people – teachers, scientists, employers – may use the list and add their data to improve the impact and usefulness of such database. It can be found at NukWik at https://wiki.uio.no/mn/safe/nukwik/index.php/Main_Page.

This deliverable contributes to the following Work-Packages and Tasks:

WP 1
🗌 Task 1.1 🗌 Task 1.2 🗌 Task 1.3 🗌 Task 1.4 🗌 Task 1.5 🔀 Task 1.6
WP 2
Task 2.1 Task 2.2 Task 2.3
WP 3
Task 3.1 Task 3.2 Task 3.3 Task 3.4
WP 4
🗌 Task 4.1 🗌 Task 4.2 🗌 Task 4.3 🗌 Task 4.4 🗌 Task 4.5 🗌 Task 4.6 🗌 Task 4.7
Task 4.1 Task 4.2 Task 4.3 Task 4.4 Task 4.5 Task 4.6 Task 4.7 WP 5
 □ Task 4.1 □ Task 4.2 □ Task 4.3 □ Task 4.4 □ Task 4.5 □ Task 4.6 □ Task 4.7 WP 5 □ Task 5.1 □ Task 5.2 □ Task 5.3
Task 4.1 Task 4.2 Task 4.3 Task 4.4 Task 4.5 Task 4.6 Task 4.7 WP 5 Task 5.1 Task 5.2 Task 5.3 WP 6
 Task 4.1 Task 4.2 Task 4.3 Task 4.4 Task 4.5 Task 4.6 Task 4.7 WP 5 Task 5.1 Task 5.2 Task 5.3 WP 6 Task 6.1 Task 6.2 Task 6.3 Task 6.4 Task 6.5 Task 6.6

OUTLINE

1	IJ	NTRODUCTION	.4
2	C	CREATING THE LIST AND DATA MINING	.5
	2.1 2.2 2.3	LIST OF TEXTBOOKS USED IN NRC EDUCATION FINDINGS FROM THE LIST OF TEACHING MATERIALS GROUPING, AVAILABILITY AND EVALUATION OF THE TEXTBOOKS	.5 .5 .7
3	C	CONCLUSIONS	.8
4	A	APPENDICES	.9

1 INTRODUCTION

This deliverable is a part of the Work Package 1: University curricula evaluation and it further exploits the data collected in the previous deliverables, mainly from the questionnaire distributed among the European universities teaching NRC (see D1.1). This deliverable D1.4 is the output of Task 1.6: Compiling, reviewing and evaluating a list of textbooks in nuclear chemistry (CTU). The aim of this deliverable D1.4 "Report listing and grouping the available textbooks of nuclear chemistry" has been – based on the available data in the questionnaire – to create a comprehensive list of available textbooks, university textbooks and other teaching aids that adequately cover all the topics within nuclear chemistry at different educational levels. One of the results of this evaluation should have been identification of the potential gaps in the coverage of the field by available textbooks and suggestion of the correction measures.

2 CREATING THE LIST AND DATA MINING

Because of its sorting and filtration abilities, the MS Excel table processor was used to compile the list, all the data were then sorted and analysed. In addition to the data from the questionnaire, additional data were searched and added – mainly in the bibliography, full titles and similar fields. The file was also uploaded to the NukWik to be available to public.

2.1 List of textbooks used in NRC education

A list of all teaching materials, which were reported to be used by the respondents, was created from the data extracted from the questionnaires. The data in the list were then sorted according to criteria summarized in the following tables. In the respective fields, the sorting values were defined as follows.

Country	University	Faculty/Institute	Department
Level	Course title	Course language	Authors
Title	Bibliographic data	Туре	Language

Table 1: Sorting groups for the list of materials

Table 2: Sorting values for educational level and type of material in the list of materials

Level	BSc., MSc., BScMSc., BScMScPh.D., MScPhD., Ph.D.
Туре	Textbook, Course handout, Laboratory manual, Other teaching aid, Textbook-Course handout, Course handout-Laboratory manual
Scope	General, Comprehensive, "Topical" (see Table 5)

2.2 Findings from the list of teaching materials

In the list, the teaching materials from 26 universities in 19 countries are summarized. Most of the respondents did not fill sufficient details to get full statistics about teaching materials used. However, some significant general conclusions may be drawn from the collected data.

Table 3: Occurrence of types of materials in the questionnaire

Туре	Hits
Textbook	181
Textbook + Course handout	8
Course handout + Laboratory manual	85
Other teaching aid	19
Laboratory manual	15

Graph 1: Number of universities using the most common textbooks listed in the questionnaire. Full list and tables of contents of selected textbooks are given in the Appendices.

Table 3 shows that, as it could be expected, the most common types of teaching aids are textbooks, laboratory manuals and course handouts. Graph 1 gives an overview of the most widely used textbooks. Various editions of the textbooks were not grouped because there are often significant differences among them and, following to the available information, in some groups, specific editions are preferred. Therefore, information about utilization of the versions is also valuable. This graph shows that, apart from the widely accepted Choppin et al.'s textbook, there is little agreement on specific textbooks and it is only rarely when more than two universities use the same textbook. The main reason for this is the relatively high percentage of textbooks in national languages (see Table 4) used in most of the non-Scandinavian universities/countries. The data listed in the Table 4 have been normalized so that each textbook was counted only once irrespective of its potential usage in more than one course at the respective university. It should be noted here that the data in Table 4 may be somewhat influenced by the fact that in some cases it was not clearly stated in the questionnaire if the textbook used is the original one or its translation to the national language.

State	% of English textbooks	State	% of English textbooks
Austria	0	Greece	0
Bulgaria	33	Hungary	40
Croatia	100	Italy	75
Cyprus	0	Norway	100
Czech Republic	71	Poland	33
Finland	100	Sweden	100
Germany	71	The Netherlands	67

2.3 Grouping, availability and evaluation of the textbooks

As was already shown in the other Tasks in the CINCH project, the original presumption that the education in nuclear and radiochemistry in Europe is quite diverse was clearly confirmed. This is again confirmed in the list of used textbooks and other educational materials.

Grouping of the textbooks according to respective courses to make some more general conclusions collides with rather diverse structure of the courses over universities, countries etc. and relatively low number of specialized and/or national textbooks. In the Table 5, the number of textbooks in the sorting groups defined on the "Minimum requirements for teaching nuclear and radiochemistry" (CINCH Deliverable D2.1) basis is shown.

Anyway, the filtration and analysis features of MS Excel allow sorting and comparing various teaching materials according to specific interest of particular users. However, one should realize that – at this stage – the data still represent a rather informatively inhomogeneous collection and attempts to draw very comprehensive conclusions might provide misleading results. However, using this list as a living document, where all the users will provide necessary and updated information, could result in very valuable overview with clear output.

In the database, all textbooks used are listed. Some of them are not topically in the field of nuclear and radiochemistry however they are used as one of several textbooks in some courses. This concerns e.g. fundamental textbooks of physics, biology, or chemistry. Using filtration of the database, it can be easily found for which courses they are used.

Scope	Number
Comprehensive	14
Fundamental	26
Radiological protection	1
Radiation detection and dosimetry	4
Radioanalytics (Nuclear analytical methods, determination of radionuclides)	9
Radionuclides production	1
Nuclear fuel cycle	3
Radiopharmaceutical chemistry	7
Environmental radiochemistry	4
Radiation chemistry	9
Radioactive elements (Actinides, transactinides and radioactive elements)	5
Nuclear chemistry in life sciences	6

Table 5: Number of textbooks in the used scope groups

3 CONCLUSIONS

As it was mentioned above, the summarizing and analysis of the data extracted from the questionnaire was influenced by inconsistent filling of the form and not always sufficiently in-depth information on the teaching materials. Nevertheless, as is shown in the appendix, the tables above, and also the MS Excel database itself, the survey could be summarized in the following:

- in the list, the teaching materials from 26 universities in 19 countries are summarized,
- a rather limited number of generally internationally accepted textbooks exist for teaching general NRC,
- some of these books are relatively old even though some of them are updated in revised editions, but there is limited number of new original books,
- the situation with "topical" textbooks for specialized courses is even more diverse it is only rarely that the specific (text)books are used at more than one university, many of them exist in national languages, only,
- the data seem to indicate (however not sufficiently conclusively) that there are some differences between northern (Scandinavia), western (mainly Germany) and eastern Europe (Czech Republic, Poland, Hungary, Bulgaria) in the language of the textbooks in the mentioned order the use of the "international" English textbooks seems to decrease. This could be based on historical reasons and strong emphasis on teaching in English in the Scandinavia.

The list of teaching materials was created and is supposed to be used as a "living document", which would be uploaded to the CINCH web page for general use. All interested people – teachers, scientists, employers – may use the list and add their data to improve the impact and usefulness of such database. It can be found at NukWik at:

https://wiki.uio.no/mn/safe/nukwik/index.php/Main_Page.

4 APPENDICES

- 1. Full list of textbooks occurring in the questionnaire.
- 2. Contents and front-pages of the selected most frequently used textbooks.
- 3. The MS Excel database (file available at NukWik)

Table: Full list of textbooks occurring in the questionnaire

Choppin G. Lilianzin I.O. Budharg I: Padiochemistry and Nuclear Chemistry. 2nd ed	5	
Choppin G. Rydberg L. Lilienzin I.O.: Radiochemistry and Nuclear Chemistry. 3rd ed.		
Ehoppin G. Kydoelg J., Enjenzin J.O.: Radiochemistry and Nuclear Methods of Analysis	3	
Eriodlander G. Kennedy, L. Miller, L: Nuclear and Padiochemistry	3	
All SCL D. C. ill and D. E. J. Miller J., Nuclear and Kadiochemistry	3	
Adloff J. P. Guillamont R.: Fundamentals of Radiochemistry	2	
Bichler M.: Radiochemie	2	
Cotton S.: Lanthanide and Actinide Chemistry	2	
Deckart H. Cox P.H.: Principles of Radiopharmacology	2	
Knoll G.F.: Radiation Detection and Measurement (1989)	2	
Knoll G.F.: Radiation Detection and Measurements (2000)	2	
Lieser K.H.: Introduction into the Nuclear Chemistry (Einführung in die Kernchemie) (1991)	2	
Lieser K.H.: Nuclear and Radiochemistry (1997)	2	
Loveland W. Morrisey D.J., Seaborg G.: Modern Nuclear Chemistry	2	
Majer V. : Fundamentals of applied nuclear chemistry (Základy užité jaderné chemie)	2	
Majer V. : Fundamentals of nuclear chemistry (Základy jaderné chemie)	2	
Stary J. Kyrš M., Marhol M.: Separation methods in radiochemistry (Separační metody v radiochemii)	2	
Tait W.H.: Radiation Detection	2	
Vertes A. Nagy S., Klencsar Z., Lovas R.G., Rösch F.: Handbook of Nuclear Chemistry	2	
Aitken D.: Fizika és régészet	1	
Alfassi Z.B.: Activation Analysis	1	
Alfassi Z.B.: Chemical Analysis by Nuclear Methods	1	
Alpen E.L.: Radiation biophysics	1	
Bednář J.: Theoretical foundations of radiation chemistry	1	
Beiser A.: Concepts of Modern Physics	1	
Benedict M. Pigford T., Levi H.: Nuclear Chemical Engineering	1	
Beneš P. Majer V.: Trace Chemistry of Aqueous Solutions	1	
Betina V. Nemec P.: General microbiology (Všeobecná mikrobiológia)	1	
Bockris J. O'M. Khan S.UM.: Surface electrochemistry	1	
Buncel E. Jones J.R.: Isotopes in the Physical and Biomedical Sciences	1	
Czerwiński A.: Nuclear energy and radioactivity (Energia Jądrowa i Promieniotwórczość)	1	
Das A. Ferbel T.: Introduction to nuclear and particle physics	1	
Dienstbier Z.: Diagnostics with methods of nuclear medicine (Diagnostika metodami nukleární mediciny)	1	
Dirac P.A.M.: The Principles of Quantum Mechanics, Fourth ed.,	1	

Dwurjanyn P. Garnett J. : Radiation Curing in Polymer Science and Technology.	1	
Eisenbud M.: Environmental Radioactivity	1	
Evans E.A. Muramatsu M.: Radiotracer Techniques and Applications	1	
Evans E.A.: Tritium and its Compounds	1	
Farhataziz M.A Rodgers J.: Radiation chemistry - Principles and applications	1	
Fehér I. Deme S.: Sugárvédelem	1	
Földiák G.: Az izotópok ipari alkalmazása	1	
Formanek J.: Introduction to quantum theory (Úvod do kvantové teorie)	1	
Genov L. Kasabov G.: Basic course of general and applied radiochemistry	1	
Gosman A. Čech J.: Nuclear methods in chemical research (Jaderné metody v chemickém výzkumu)	1	
Hála J.: Radioactivity, ionizing radiation, nuclear energy (Radioaktivita, ionizující záření, jaderná energie)	1	
Hall E.: Radiobiology for the radiologist	1	
Hendee W. R.: Radioactive isotopes in biological research	1	
Hess D.: Physiology of plants (Fyziologie rostlin)	1	
Choppin G. Rydberg J.: Nuclear Chemistry	1	
Choppin G. Rydberg J.: Nuclear Chemistry – Theory and Applications	1	
Jones J.R.: Isotopes: Essential Chemistry and Application I.+II.	1	
Kanyár B. Beres Cs., Somlai J., Szabo S. A.: Radioecology and environmental radiation protection (Radioökológia és környezeti sugárvédelem)	1	
Kanyár B. Somlai J., Szabo L.D.: A sugárzások elleni védelem dozimetriai és hatástani alapjai	1	
Katz J.J. Seborg G.T., Mors L.R.: The Chemistry of the Actinide Elements	1	
Keller C.: Radiochemistry	1	
Keller K.A. Lange J., Münzel H.: Estimation of unknown excitation functions and thick target yields for p, d, 3He and α reactions.	1	
Kilbourne M.R: Fluorine-18 Labelling of Radiopharmaceuticals.	1	
Kónya Nagy L. Gy. : Basic Radiochemistry I	1	
Köteles Gy.: Sugáregészségtan	1	
L'Annunziata M.F.: Handbook of Radioactivity Analysis	1	
Lehnert, S.: Biomolecular action of ionizing radiation	1	
Lehto J. Hou X.: Chemistry and analysis of radionuclides	1	
Lešetický L.: Labelled compounds (Metody přípravy izotopicky značených sloučenin)	1	
Lieser K.H.: Einführung in die Kernchemie (1980)	1	
Lilley J.: Nuclear Physics: Principles and Applications		
Loizos Z.G.: Nuclear Chemistry – Nuclear Chemical Technology vol 1 and 2		
Majer V. : Grundlagen der Kernchemie	1	

Marcus Y. Kertes A.S.: Ion Exchange and Solvent Extraction of Metal Complexes	1	
Marx Gy.: Atommag-közelben		
Messiah A.: Quantum Mechanics, Two Volumes Bound as One	1	
Mozumder A. Hatano Y.: Charged particle and photon interactions with matter: Chemical, Physicochemical, and Biological Consequences with Applications	1	
Mozumder A.: Fundamentals of Radiation Chemistry	1	
Nagy L.Gy.: Radiochemistry and isotope technique (Radiokémia és izotóptechnika)	1	
Navratil O. Hála J., Kopunec R., Lešetický L., Macášek F., Mikulaj V.: Nuclear Chemistry (Jaderná chemie)	1	
Navratil O. Hála J., Kopunec R., Macášek F., Mikulaj V., Lešetický L.: Nuclear Chemistry	1	
Nemeth Z.: Basic of Radiochemistry and isotope technology	1	
Nias A. H. W.: An introduction to radiobiology	1	
Obrusník I. J. Zýka, ed.: Neutron activation analysis (Neutronová aktivační analýza), New trends in analytical chemistry, vol.2	1	
Oddone M.: Radiochemistry	1	
Parker S.P.: McGraw-Hill Encyclopedia of Environmental Science	1	
Parsons A.F.: An Introduction to Free Radical Chemistry	1	
Pashalidis I.: Basic Radiochemistry I	1	
Phelps M. Mazziotta J., Scelbert H.: Positron Emission Tomography and Autoradiography: Principles and Applications for Brain and Heart.	1	
Pierik R.L.M.: In Vitro Culture of Higher Plants	1	
Pikaev A.K.: Present radiation chemistry (Sovremennaja radiacionnaja chimija)	1	
Rontó Gy. Tarján I.: A biofizika alapjai	1	
Rydberg J. Musikas C., Choppin G.: Principles and Practices of Solvent Extraction	1	
Sakurai J.J.: Modern Quantum Mechanics	1	
Schädel M.: The Chemistry of Superheavy Elements	1	
Schubiger P.A. Alberto R., Smith A.: Vehicles Chelators, and Radionuclides: Choosing the "Building Blocks" of an Effective Therapeutic Radioimmunoconjugate.	1	
Skwarzec B.: Environmental radiochemistry and radiological protection	1	
Sobkowski J. Jelińska-Kazimierczuk M.: Nuclear chemistry (Chemia Jądrowa)	1	
Sobkowski J.: Radiochemistry and radiation protection	1	
Sood D.D. Reddy A.V., Ramamoorthy N.: Fundamentals of Radiochemistry	1	
Spinks J.W.T. Woods R.J.: An introduction to radiation chemistry	1	
Steel G.G.: Basic Clinical Radiobiology	1	
Strijckmans K.: Analytische biochemie. Deel 1: Radiochemie	1	
Sztanyik B. L.: Sugársérülések megelőzése és gyógykezelése	1	

Šeda J. Musílek L., Petr I., Sabol J., Melichar Z.: Dosimetry of ionizing radiation (Dozimetrie ionizujícího záření)	1
Theobald T.: Sampson's Textbook of Radiopharmacy	1
Tölgyessy J. Kyrš M.: Radioanalytical Chemistry	1
Tölgyessy J. Varga Š.: Nuclear Analytical Chemistry	1
Tölgyessy J. Varga Š.: Nuclear Analytical Chemistry (Nukleárná analytická chémia)	1
Turner J.E.: Atoms, Radiation, and Radiation protection	1
ÚISJP: Fundamentals of radiation technologies (Základy radiačních technologií)	1
Úlehla I. et al: Atoms, nuclei, particles (Atomy, jádra, částice)	1
Vallabhajosula S.: Molecular Imaging for PET and SPECT	1
Vertes A. Kiss I.: Nuclear Chemistry	1
Wieland D.M. Tobes M.C., Mangner TJ.: Analytical and Chromatographic Techniques in Radiopharmaceutical Chemistry	1
Williams W.S.C.: Nuclear and particle physics	1
Woods R.J. Pikaev A.K.: Applied Radiation Chemistry, Radiation Processing.	1
Zvára I.: The Inorganic Radiochemistry of Heavy Elements	1
Zýka J. et al: Analytical handbook (Analytická příručka)	1
Zýka J. et al: New trends in analytical chemistry (Nové směry v analytické chemii)	

Cotton S.: Lanthanide and Actinide Chemistry

Introduction to the Lanthanides	
The Lanthanides - Principles and Energetics	
The Lanthanide Elements and Simple Binary Compounds	
Coordination Chemistry of the Lanthanides	35
Electronic and Magnetic Properties of the Lanthanides	61
Organometallic Chemistry of the Lanthanides	89
The Misfits: Scandium, Yttrium, and Promethium	107
The Lanthanides and Scandium in Organic Chemistry	121
Introduction to the Actinides	145
Binary Compounds of the Actinides	155
Coordination Chemistry of the Actinides	173
Electronic and Magnetic Properties of the Actinides	201
Organometallic Chemistry of the Actinides	209
Synthesis of the Transactinides and their Chemistry	225
Bibliography	
Index	

Ehmann W.D. Vance D.E.: Radiochemistry and Nuclear Methods of Analysis

Introduction to Radiochemistry	
Types of Radioactive Decay	
Nuclear Chemistry and Mass-Energy Relationships	
Nuclear Reactions	
Rates of Nuclear Decay	
Interactions of Radiation with Matter	
Health Physics	
Radiochemistry Instrumentation	
Nuclerar Activation Analysis	
Radiotracer Methods	
Ion Beam Analysis and Chemical Applications of Radioactivity	
Nuclear Dating Methods	
The Origin of the Chemical Elements	
Particle Generators	

Friedlander G., Kennedy J., Miller J.: Nuclear and Radiochemistry Friedlander G., Kennedy J. W., Macias E. S., Miller J. M.: Nuclear and Radiochemistry

INTRODUCTION I	
ATOMIC NUCLEI	17
RADIOACTIVE DECAY PROCESSES	54
NUCLEAR REACTIONS	110
EQUATIONS OF RADIOACTIVE DECAY AND GROWTH	191
INTERACTION OF RADIATIONS WITH MATTER	206
RADIATION DETECTION AND MEASUREMENT	243
TECHNIQUES IN NUCLEAR CHEMISTRY	287
STATISTICAL CONSIDERATIONS IN RADIOACTIVITY	339
NUCLEAR MODELS	366
RADIOCHEMICAL APPLICATIONS	410
NUCLEAR PROCESSES AS CHEMICAL PROBES	458
NUCLEAR PROCESSES IN GEOLOGY	482
NUCLEAR ENERGY	520
SOURCES OF NUCLEAR BOMBARDING PARTICLES	552
B Photon Sources	578
Measurement of Beam Energies and Intensities	589
APPENDIX A Constants and Conversion Factors	599
APPENDIX B Relativistic Relations	601
APPENDIX E GammaRay Sources	
NAME INDEX	665

Choppin G. Liljenzin J.O., Rydberg J.: Radiochemistry and Nuclear Chemistry, 3rd ed.

Origin of Nuclear Science	1
Nuclei Isotopes and Isotope Separation	11
Nuclear Mass and Stability	41
Unstable Nuclei and Radioactive Decay	58
Radionuclides in Nature	94
Absorption of Nuclear Radiation	123
Radiation Effects on Matter	166
Detection and Measurement Techniques	192
Uses of Radioactive Tracers	239
Cosmic Radiation and Elementary Particles	283
Nuclear Structure	299
Energetics of Nuclear Reactions	334
Particle Accelerators	348
Mechanics and Models of Nuclear Reactions	366
Production of Radionuclides	388
The Transuranium Elements	415
the Beginning and the Future	440
Radiation Biology and Radiation Protection	474
Principles of Nuclear Power	514
Nuclear Power Reactors	560
Nuclear Fuel Cycle	583
Behavior of Radionuclides in the Environment	642
A Solvent Extraction Separations	674
B Answers to Exercises	683
Isotope Chart	685
Element and Nudide Index	687
Subject Index	693

Knoll G.F.: Radiation Detection and Measurement

Radiation Sources	1
Radiation Interactions	29
Counting Statistics and Error Prediction	65
General Properties of Radiation Detectors	105
Ionization Chambers	131
Proportional Counters	159
Geiger-Mueller Counters	207
Scintillation Detector Principles	223
Photomultiplier Tubes and Photodiodes	275
Radiation Spectroscopy with Scintillators	321
Semiconductor Diode Detectors	365
Germanium GammaRay Detectors	415
Other SolidState Detectors	467
Slow Neutron Detection Methods	519
Fast Neutron Detection and Spectroscopy	553
Pulse Processing	595
Pulse Shaping Counting and Timing	625
Multichannel Pulse Analysis	705
Miscellaneous Detector Types	733
Background and Detector Shielding	779
Appendix A The NIM CAMAC and VME Instrumentation Standards	801
Appendix B Derivation of the Expression for Sample Variance in Chapter 3	807
Appendix C Statistical Behavior of Counting Data for Variable Mean Value	809
Appendix D The ShockleyRamo Theorem for Induced Charge	813

Lieser K.H.: Nuclear and Radiochemistry

Karl Heinrich Lieser

Nuclear and Radiochemistry Fundamentals and Applications

Radioactivity in Nature	
Radioelements, Isotopes and Radionuclides	
Physical Properties of Atomic Nuclei and Elementary Particles	
Radioactive Decay	
Decay Modes	
Nuclear Radiation	
Measurement of Nuclear Radiation	
Nuclear Reactions	
Chemical Effects of Nuclear Reactions	
Influence of Chemical Bonding on Nuclear Properties	
Nuclear Energy, Nuclear Reactors, Nuclear Fuel and Fuel Cells	
Production of Radionuclides and Labelled Compounds	
Special Aspects of the Chemistry< of Radionuclides	
Radioelements	
Radionuclides in Geo- and Cosmochemistry	
Dating by Nuclear Methods	
Radioanalysis	
Radiotracers in Chemistry	
Radionuclides in the Life Sciences	
Technical and Industrial Applications of Radionuclides and Nuclear Radiation	
Radionuclides in the Geosphere and the Biosphere	
Dosimetry and Radiation Protection	
Appendix, Glossary, Chart of the Nuclides	

Loveland W. Morrisey D.J., Seaborg G.: Modern Nuclear Chemistry

CHAPTER 1	INTRODUCTORY CONCEPTS	1
CHAPTER 2	NUCLEAR PROPERTIES	29
CHAPTER 3	RADIOACTIVE DECAY KINETICS	57
CHAPTER 4	RADIOTRACERS	91
CHAPTER 5	NUCLEAR FORCES	129
CHAPTER 6	NUCLEAR STRUCTURE	137
CHAPTER 7	αDECAY	177
CHAPTER 8	β DECAY	199
CHAPTER 9	γ-RAY DECAY	221
CHAPTER 10	NUCLEAR REACTIONS	249
CHAPTER 11	FISSION	299
CHAPTER 12	NUCLEAR REACTIONS IN NATURE: NUCLEAR ASTROPHYSICS	331
CHAPTER 13	ANALYTICAL APPLICATIONS OF NUCLEAR REACTIONS	365
CHAPTER 14	REACTORS AND ACCELERATORS	383
CHAPTER 15	THE TRANSURANIUM ELEMENTS	429
CHAPTER 16	NUCLEAR REACTOR CHEMISTRY	465
CHAPTER 17	INTERACTION OF RADIATION WITH MATTER	497
CHAPTER 18	RADIATION DETECTORS	537
CHAPTER 19	RADIOCHEMICAL TECHNIQUES	579
APPENDIX A	FUNDAMENTAL CONSTANTS AND CONVERSION FACTORS	613
APPENDIX B	NUCLEAR WALLET CARDS	617
APPENDIX C	PERIODIC TABLE OF ELEMENTS	639
APPENDIX D	LIST OF ELEMENTS	641
APPENDIX E	ELEMENTS OF QUANTUM MECHANICS	643
INDEX	665	

Vertes A. Nagy S., Klencsar Z., Lovas R.G., Rösch F.: Handbook of Nuclear Chemistry

Volume 1:

- 1. Nuclear and Radiochemistry: the First 100 Years
- 2. Basic Properties of the Atomic Nucleus
- 3. Nuclear Reactions
- 4. Nuclear Fission
- 5. Fission Through Triple-Humped Fission Barriers
- 6. Nuclear Fusion
- 7. Kinetics of Radioactive Decay
- 8. Interaction of Radiation with Matter
- 9. Stochastics and Nuclear Measurements
- 10. The Standard Model of Elementary Particles
- 11. Reference Data (Volume 1): The International System of Units (SI)

Volume 2:

- 1. Origin of the Chemical Elements
- 2. Natural Radioactive Decay Chains
- 3. Radioelements
- 4. Isotope Effects
- 5. Isotopic Paleoclimatology
- 6. Radioactive Dating Methods
- 7. Production and Chemistry of Transuranium Elements
- 8. Production and Identification of Transactinide Elements
- 9. Chemistry of Transactinides
- 10. Superheavy Elements
- 11. Table of the Nuclides (Volume 2)

Volume 3:

- 1. Radiation Chemistry
- 2. Hot Atom Chemistry
- 3. Mossbauer Spectroscopy
- 4. Mossbauer Excitation by Synchrotron Radiation
- 5. Positron Annihilation Spectroscopies
- 6. Exotic Atoms and Muonium
- 7. Neutron Scattering Methods in Chemistry
- 8. Activation Analysis

- 9. Neutron-Induced Prompt Gamma Activation Analysis (PGAA)
- 10. Applications of Neutron Generators
- 11. Chemical Applications of Ion Accelerators
- 12. Microscopic X-ray Fluorescence Analysis with Synchrotron Radiation Sources
- 13. Tracer Technique
- 14. Reference Data (Volume 3): Mossbauer Nuclides

Volume 4:

- 1. Introduction to the Fourth Volume
- 2. Reactor-Produced Medical Radionuclides
- 3. Cyclotron Production of Medical Radionuclides
- 4. Radionuclide Generators
- 5. 11C: Labeling Chemistry and Labeled Compounds
- 6. 18F: Labeling Chemistry and Labeled Compounds
- 7. 99mTc: Labeling Chemistry and Labeled Compounds
- 8. Radioiodination Chemistry and Radioiodinated Compounds
- 9. Radiometals (non-Tc, non-Re) and Bifunctional Labeling Chemistry
- 10. Radionuclide Therapy

Volume 5:

- 1. Dosimetry and Biological Effects of Ionizing Radiation
- 2. Radiation Detection
- 3. Dosimetry Methods
- 4. Particle Accelerators
- 5. Isotope Separation
- 6. Solvent Extraction and Ion Exchange in Radiochemistry
- 7. Radiochemical Separations by Thermochromatography
- 8. Methods of Cosmochemical Analysis
- 9. Environmental Radiation Protection
- 10. Reference Data (Volume 5): Standards for Detector Calibration

Volume 6:

- 1. Technical Application of Nuclear Fission
- 2. Developments and Tendencies in Fission Reactor Concepts
- 3. Nuclear Power Sources for Space Systems
- 4. Technical Developments for Harnessing Controlled Fusion
- 5. Radioactive Waste Management
- 6. Nuclear Forensic Materials and Methods
- 7. Nuclear Safeguards Verification Measurement Techniques