Difference between revisions of "Solutions 5"

From mn/safe/nukwik
Jump to: navigation, search
Line 12: Line 12:
 
<math>m_{1}^{2}v_{1}^{2}=m_{2}^{2}v_{2}^{2}\rightarrow m_{1}E_{1}=m_{2}E_{2}\rightarrow E_{1}=\frac{m_{2}}{m{1}}E_{2}=\frac{1}{3}E_{2}</math>  
 
<math>m_{1}^{2}v_{1}^{2}=m_{2}^{2}v_{2}^{2}\rightarrow m_{1}E_{1}=m_{2}E_{2}\rightarrow E_{1}=\frac{m_{2}}{m{1}}E_{2}=\frac{1}{3}E_{2}</math>  
  
<math>E_{1}+E_{2}=Q=764 keV\rightarrow E_{1} = 190 Kev, E_{2}=570 keV</math>  
+
<math>E_{1}+E_{2}=Q=764\, keV\rightarrow E_{1} = 190\, keV, E_{2}=570\, keV</math>  
  
<br>
+
<br>  
  
'''2:'''<br>
+
'''2:'''<br>  
  
#Q-Value_ 2.224MeV<br>
+
#Q-Value_ 2.224MeV<br>  
#&nbsp;And 3. The energy of the deuterium is not calculated relativistic but the γ-ray is completely relativistic, we then get: <math>m_{d}v_{d}=\frac{E_{\gamma}}{c}\rightarrow m_{d}^{2}=\frac{E_{\gamma}^{2}}{c^{2}}\leftarrow \frac{1}{2}m_{d}^{2}v_{d}^{2}=\frac{E^{2}_{\gamma}}{2c^{2}}</math><br>
+
#&nbsp;And 3. The energy of the deuterium is not calculated relativistic but the γ-ray is completely relativistic, we then get: <math>m_{d}v_{d}=\frac{E_{\gamma}}{c}\rightarrow m_{d}^{2}=\frac{E_{\gamma}^{2}}{c^{2}}\rightarrow \frac{1}{2}m_{d}^{2}v_{d}^{2}=\frac{E^{2}_{\gamma}}{2c^{2}}</math>
  
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Inserting the energy of the deuterium we get:
  
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>E_{d}=\frac{E_{\gamma}^{2}}{2m_{d}c^{2}}</math>
  
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; we know that <sub></sub><math>E_{d}+E_{\gamma}=Q=2.2224\, MeV</math> solving for this:
  
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>E_{d}=0.0013\, MeV,\, E_{\gamma}=2.2226\, MeV</math>
 +
 +
 +
 +
<br>
 +
 +
<br>
  
 
<br>
 
<br>

Revision as of 13:18, 18 June 2012

1:

  1. Thermal neutrons have a kinetic energy of about 0.025eV
  2. Fast neutrons are “braked” with elastic collisions with particles with the same size as the neutrons. A moderator also needs to have a low cross-section for absorbing neutrons.
  3. A moderator is a material that brakes the neutrons, for instance H2O, D2O, C, Be. A neutron absorbent catches the neutrons and reacts with the neutron. Good absorbants are borium and gadolinium.
  4. From the nuclide carte we can see that 3He has a high cross-section for the n,p-reaction.
  5. The reaction 3He+n arrow 3H++1H(+2e-). The charged particles from the reaction creates more ionisations when they travel towards the anode and the cathode, this gives a electric signal.
  6. The Q-value from the reaction is 764 keV, the reaction is exothermic.
  7. 3H+ and 1H+ is created.
  8. The two products in the reaction recives opposing recoils 180 degrees. Conversion of momentum m1v1=m2v2 gives:

[math]m_{1}^{2}v_{1}^{2}=m_{2}^{2}v_{2}^{2}\rightarrow m_{1}E_{1}=m_{2}E_{2}\rightarrow E_{1}=\frac{m_{2}}{m{1}}E_{2}=\frac{1}{3}E_{2}[/math]

[math]E_{1}+E_{2}=Q=764\, keV\rightarrow E_{1} = 190\, keV, E_{2}=570\, keV[/math]


2:

  1. Q-Value_ 2.224MeV
  2.  And 3. The energy of the deuterium is not calculated relativistic but the γ-ray is completely relativistic, we then get: [math]m_{d}v_{d}=\frac{E_{\gamma}}{c}\rightarrow m_{d}^{2}=\frac{E_{\gamma}^{2}}{c^{2}}\rightarrow \frac{1}{2}m_{d}^{2}v_{d}^{2}=\frac{E^{2}_{\gamma}}{2c^{2}}[/math]

         Inserting the energy of the deuterium we get:

         [math]E_{d}=\frac{E_{\gamma}^{2}}{2m_{d}c^{2}}[/math]

         we know that [math]E_{d}+E_{\gamma}=Q=2.2224\, MeV[/math] solving for this:

         [math]E_{d}=0.0013\, MeV,\, E_{\gamma}=2.2226\, MeV[/math]