Difference between revisions of "Solutions 6"

From mn/safe/nukwik
Jump to: navigation, search
Line 31: Line 31:
 
<br>2: <br>  
 
<br>2: <br>  
  
#<sup></sup><span class="texhtml"><math>^{239}Pu + \eta \> ^{99}Y + 2\eta + ^(139)Cs</span>
+
#239Pu+n-&gt;99Y+2n+139Cs
#Q-value: 191.42MeV  
+
#Q-value: 191.42MeV
#The energy which is released by disintegration after stability is reached: &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; <sup>99</sup>Y: M(<sup>99</sup>Y)-M(<sup>99</sup>Ru)=17.4MeV<br><sup>139</sup>Cs: M(<sup>1</sup><sup>39</sup>Cs)-M(<sup>139</sup>La)=6.5MeV<br><br>
+
#The energy which is released by disintegration after stability is reached:
#<sup></sup>2/3 of this energy will disappear with neutrinos. Some of the disintegrations have too long half-lives to have an effect on the reactor safety.  
+
#<sup>99</sup>Y: M(<sup>99</sup>Y)-M(<sup>99</sup>Ru)=17.4MeV&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;<sup>139</sup>Cs: M(<sup>139</sup>Cs)-M(<sup>139</sup>La)=6.5MeV
#1.0g <sup>239</sup>Pu = 2.5 *10<sup>21</sup> atomer. Number of fissions per seconds is σ*ϕ*Nt = 1.89*10<sup>14</sup>, which will give an effect of <span class="texhtml">3.6 * 10<sup>16</sup>''M''''e''''V''&nbsp; (5811''W)''</span>  
+
#2/3 of this energy will disappear with neutrinos. Some of the disintegrations have too long half-lives to have an effect on the reactor safety.<br>
#The formation of <sup>240</sup>Pu: σ*ϕ*Nt= 6.8*10<sup>13</sup>s<sup>-1</sup>. After 100 days of irradiation 4*10<sup>-6</sup> g <sup>240</sup>Pu will be made.
+
 
 +
<br>
 +
 
 +
1.0g <sup>239</sup>Pu = 2.5 *10<sup>21</sup> atomer. Number of fissions per seconds is σ*ϕ*Nt = 1.89*10<sup>14</sup>, which will give an effect of 3.6*10<sup>16</sup>meV-&gt;5811W<br>The formation of <sup>240</sup>Pu: σ*ϕ*Nt= 6.8*10<sup>13</sup>s<sup>-1</sup>. After 100 days of irradiation 4*10<sup>-6</sup> g Pu will be made.<br><span'''
 +
'''
 +
</span> '''3:''' <br>
 +
 
 +
#232Th+n-&gt;233Th-&gt;233Pa-&gt;233U
 +
#<sup>133</sup>I
 +
#One ton <sup>232</sup>Th equals to 2.6*10<sup>27</sup> atoms. The rate of formation for neutron capture (<sup>233</sup>Th): σ*ϕ*N<sub>t</sub> = 7.37*10^<sup>24</sup>cm<sup>2</sup>*10<sup>14</sup><math>\eta</math> cm-2s-1*2.6*10<sup>27</sup>atomer= 1.91*10<sup>18</sup>atomer <sup>s-1</sup>
 +
#It will take 37hours of irradiation to form enough <sup>233</sup>Th to give 100g <sup>233</sup>U, but disintegration of <sup>233</sup>Pa to <sup>233</sup>U must be waited.
 +
#100g <sup>233</sup>U: D=λN = 3.56*10<sup>10</sup>Bq(35.6Gbq)<br>
  
<br> 3: <br>
 
  
#<sup></sup><math>^{232}Th+\eta\>^{233Th\>^{233}Pa\>^{233}U</math>
 
#<sup>133</sup>I
 
#One ton <sup>232</sup>Th equals to 2.6*10<sup>27</sup> atoms. The rate of formation for neutron capture (<sup>233</sup>Th): σ*ϕ*Nt = 7.37*10^-24cm^2*10^14n cm-2s-1*2.6*10^27atomer= 1.91*10<sup>18</sup>atomer s<sup>-1</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; It will take 37hours of irradiation to form enough <sup>233</sup>Th to give 100g <sup>233</sup>U, but disintegration of <sup>233</sup>Pa to <sup>233</sup>U must be waited.
 
#100g <sup>233</sup>U: D=λN = 3.56*10<sup>10</sup>Bq(35.6Gbq) <br><br>
 
  
 
<br>
 
<br>

Revision as of 14:18, 18 June 2012

Nuclear reactions and nuclear reactors



1: It is noteworthy to notice the Q-value for the neutron capture and the change in binding energy per nucleon for each of the isotope pairs, see table 6.2.

Table 6.2: Calculated Q-values and change in binding energy per nukleon
Pair of nuclide
Q-value for neutron capture (MeV)
Change in EB/A (MeV)
235U/236U
6.55
-0.004
238U/239U
4.81
-0.012
239Pu/240Pu
6.53
-0.003


The nuclide pair 238U/239U have a significantly lower Q-value and a significantly bigger fall in EB/A than the other pairs. This can be explained by the pair-pair configuration in the 238U nucleus, which makes it less favorable to bind another neutron. On the other hand, for pair-odd nuclides it is much more favorable to bind another neutron to achieve a pair-pair configuration. This is shown from the cross sections for interaction with thermal neutrons (σ and σf).


2:

  1. 239Pu+n->99Y+2n+139Cs
  2. Q-value: 191.42MeV
  3. The energy which is released by disintegration after stability is reached:
  4. 99Y: M(99Y)-M(99Ru)=17.4MeV                                                                             139Cs: M(139Cs)-M(139La)=6.5MeV
  5. 2/3 of this energy will disappear with neutrinos. Some of the disintegrations have too long half-lives to have an effect on the reactor safety.


1.0g 239Pu = 2.5 *1021 atomer. Number of fissions per seconds is σ*ϕ*Nt = 1.89*1014, which will give an effect of 3.6*1016meV->5811W
The formation of 240Pu: σ*ϕ*Nt= 6.8*1013s-1. After 100 days of irradiation 4*10-6 g Pu will be made.
<span </span> 3:

  1. 232Th+n->233Th->233Pa->233U
  2. 133I
  3. One ton 232Th equals to 2.6*1027 atoms. The rate of formation for neutron capture (233Th): σ*ϕ*Nt = 7.37*10^24cm2*1014[math]\eta[/math] cm-2s-1*2.6*1027atomer= 1.91*1018atomer s-1
  4. It will take 37hours of irradiation to form enough 233Th to give 100g 233U, but disintegration of 233Pa to 233U must be waited.
  5. 100g 233U: D=λN = 3.56*1010Bq(35.6Gbq)