Difference between revisions of "Solutions 7"

From mn/safe/nukwik
Jump to: navigation, search
Line 12: Line 12:
 
'''2:'''
 
'''2:'''
 
#<math>\lambda = 7.3466 \cdot ^{-10}s^{-1}</math><br><math>D=\lambda \cdot N \rightarrow N=\frac{D}{\lambda}=\frac{6000 \, Bq}{\lambda}=8.17\cdot 10^{12}</math><br> which is 1.36<math>\cdot</math>10<sub>-11</sub> mol of <sub>137</sub>Cs
 
#<math>\lambda = 7.3466 \cdot ^{-10}s^{-1}</math><br><math>D=\lambda \cdot N \rightarrow N=\frac{D}{\lambda}=\frac{6000 \, Bq}{\lambda}=8.17\cdot 10^{12}</math><br> which is 1.36<math>\cdot</math>10<sub>-11</sub> mol of <sub>137</sub>Cs
# Calculate the initial dose rate from the renderer meat:<br><math>6000\, Bq \cdot 200 keV\cdot 1.6\cdot 10^{-16} \frac{J}{kev}=1.92\cdot 10^{-10}\frac{J}{s}</math><br> for a person of 70 kg this gives a dose of 2.74<math>\cdot</math>10<sup>-12</sup>Gy/s.<br> Then calculate the real half-life<br><math>T_{rel}=\frac{T_{B}\cdot T_{P}}{T_{B}+T{P}}\rightarrow \frac{0.302\cdot 30}{0.302+30}=108.9\, d</math><br>Then the total dose will be: <br><math>D_{tot}=\int^{t=\infty}_{t=0}D_{0}\cdot e^{-\lambda t}dt=-\frac{D_{0}}{\lambda}\left[e^{-\lambda t}\right]^{t=\infty}_{t=0}=\frac{D_{0}}{\lambda}(0-1)</math><br><math>=\frac{2.74\cdot 10^{-12}}{7.367\cdot 10^{-8}}=0.580mGy/year</math>
+
# Calculate the initial dose rate from the renderer meat:<br><math>6000\, Bq \cdot 200 keV\cdot 1.6\cdot 10^{-16} \frac{J}{kev}=1.92\cdot 10^{-10}\frac{J}{s}</math><br> for a person of 70 kg this gives a dose of 2.74<math>\cdot</math>10<sup>-12</sup>Gy/s.<br> Then calculate the real half-life<br><math>T_{rel}=\frac{T_{B}\cdot T_{P}}{T_{B}+T{P}}\rightarrow \frac{0.302\cdot 30}{0.302+30}=108.9\, d</math><br>Then the total dose will be: <br><math>D_{tot}=\int^{t=\infty}_{t=0}D_{0}\cdot e^{-\lambda t}dt=-\frac{D_{0}}{\lambda}\left[e^{-\lambda t}\right]^{t=\infty}_{t=0}=\frac{D_{0}}{\lambda}(0-1)</math><br><math>=\frac{2.74\cdot 10^{-12}}{7.367\cdot 10^{-8}}=0.580\, mGy/year</math>

Revision as of 14:38, 22 June 2012

This solution set contains a large number of errors, and is under revision. It will be updated as soon as possible.

Return to Problem Solving Sets

These exercises it might be usfull to have wallet cards they can for instance be found at Nudat 2

1:

  1. It is in total 3.58 mol = 2.1562[math]\cdot[/math] 1024 atoms of potassium in a average human where 12% that is 2.5876[math]\cdot[/math]1020 is 40K
    [math]T_{(1/2)}=1.28\cdot10^{9}=4.0283 \cdot 10^{16}\,s[/math]
    [math]\lambda= \frac{\ln 2}{T_{(1/2)}} = \frac{ln2}{4.0283\cdot 10^{16}}=1.7206\cdot 10^{-17}\, s^{-1}[/math]
    [math]D=\lambda \cdot N= 2.5876\cdot10^{20}\cdot 1.7206\cdot 10^{-17} s^{-1}=4452.45\, Bq[/math]
  2. First calculate the dose per second:
    [math]4452.45\, Bq \cdot 400\, keV Bq^{-1} = 1.78\cdot 10^{6} keV s^-1[/math]
    Then calculate it to joule per second:
    [math]1.602\cdot 10^{-16}\, J/keV \cdot 1.78\cdot 10^{6}\, keV/s = 2.8534\cdot 10^{-10}\, J/s[/math]
    which gives:
    [math]2.8534\, J/s \cdot\frac{10^{-10}}{70\, kg} = 4.076\cdot 10^{-12} J/(kg s)[/math]
    As the dose can be assumed to be constant trough a human life for each year we will recive a dose of:
    [math]3.145\cdot 10^7 \, \frac{s}{year} \cdot 4.076\cdot 10^{-12}\, \frac{J}{kg\, s} = 1.28 10^{-4}\, \frac{Gy}{year} = 0.13\, \frac{mGy}{year}[/math]

2:

  1. [math]\lambda = 7.3466 \cdot ^{-10}s^{-1}[/math]
    [math]D=\lambda \cdot N \rightarrow N=\frac{D}{\lambda}=\frac{6000 \, Bq}{\lambda}=8.17\cdot 10^{12}[/math]
    which is 1.36[math]\cdot[/math]10-11 mol of 137Cs
  2. Calculate the initial dose rate from the renderer meat:
    [math]6000\, Bq \cdot 200 keV\cdot 1.6\cdot 10^{-16} \frac{J}{kev}=1.92\cdot 10^{-10}\frac{J}{s}[/math]
    for a person of 70 kg this gives a dose of 2.74[math]\cdot[/math]10-12Gy/s.
    Then calculate the real half-life
    [math]T_{rel}=\frac{T_{B}\cdot T_{P}}{T_{B}+T{P}}\rightarrow \frac{0.302\cdot 30}{0.302+30}=108.9\, d[/math]
    Then the total dose will be:
    [math]D_{tot}=\int^{t=\infty}_{t=0}D_{0}\cdot e^{-\lambda t}dt=-\frac{D_{0}}{\lambda}\left[e^{-\lambda t}\right]^{t=\infty}_{t=0}=\frac{D_{0}}{\lambda}(0-1)[/math]
    [math]=\frac{2.74\cdot 10^{-12}}{7.367\cdot 10^{-8}}=0.580\, mGy/year[/math]