Solutions 2

From mn/safe/nukwik
Revision as of 11:47, 19 June 2012 by Hansvl@uio.no (talk | contribs)

Jump to: navigation, search

1:

  1. 1000g Th(NO3)4 = 2.083 mol arrow N(Th)= 1.25 [math]\cdot[/math]1024 atoms. This is natural thorium, where the equilibrium in Th-series will lead to equal aktivity of 232Th and 228Th. Since 232Th has a incredibly long half-life and 228Th is short compared to this and we can approximate N(Th)[math]\approx[/math]N(232Th)=1.25 [math]\cdot[/math]10^24 The disintegration for both is 1.96[math]\cdot[/math]106Bq.
  2. 6.43 [math]\cdot[/math]10-8g
  3. 10000 Bq 228Ra = 2.62 [math]\cdot[/math]1012 atoms = 90% arrow 100% 2.92 [math]\cdot[/math]1012 atoms. If 232Th is N1 and 228Ra is N2 we can use the formulas for mother/daughter realations:[math]N_{2}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}N_{1,0}(e^{-\lambda 1\cdot t}-e^{-\lambda 2\cdot t})[/math] [math]N_{1,0}=N_{2}\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1}}\cdot \frac{1}{e^{-\lambda 1\cdot t}-e^{-\lambda 2\cdot t}}=6.25\cdot10^{22}\, atoms[/math][math]\frac{6.26\cdot 10^{22}}{6.022\cdot 10^{23}}=0.104 \, mol\cdot480.06 \, g/mol=50 \, g Th(NO_{3})_{4}[/math]Alternatively it can be solved by using D(228Ra) = 11 111Bq: [math]D_{2}=D_{1}\left( 1-\frac{1}{2}^{t/t_{(1/2)}}\right)\rightarrow D_{1}= \frac{D_{2}}{\left( 1-\frac{1}{2}^{t/t_{(1/2)}}\right)}[/math][math]=\frac{11 111\, Bq }{1-\frac{1}{2}^{1/5.75 \, y}}=97838\, Bq[/math]                                       [math]N_{2}=\frac{D_{2}}{\lambda}=\frac{97838 \, Bq}{\frac{ln 2}{t_{1/2}}}=6.26 \cdot 10^{22} \, atoms[/math]
  4. 224Ra is created from 228Th immeasurable amounts of 228Th is created in three days, creation of new 224Ra can therefore be ignored. D0(224Ra)=D0(228Th)=1.36[math]\cdot[/math]106 Bg, and we get a normal decay:                                      [math]D=D_{0}\cdot e^{-\lambda t}=1.1\cdot 10^{6} \,Bq[/math]
  5. 228Ac, 220Rn,216Po, 212Pb, 212Bi, 212Po.


2:

  1. When T= 0 it's only the natural isotopes of uranium: 238U, 235U and 234U.
  2. D(238U)=D(234U)[math]\approx[/math] 12.5 kBq, D(235U) = 575 Bq.
  3. When t = 23.5 h there is created some 234Th and some 234Pa, but creation of other daugthers from 238U is negligible. From the 235U there is created231Th
  4. D(238U) = D(234U) =D0,
    D(234Th) = D(234Pa) = 376 Bq,
    D(235U) = D0,
    D(231Th) = 287.5 Bq.
  5. When t = 23 days the same radionuclides are present.
  6. D(238U) = D(234U) =D0,
    D(234Th) = D(234Pa) = 6250 Bq,
    D(235U) = D0,
    D(231Th) = D(235U) =575 Bq. 
  7. When t = 1.0 y the same radionuclides are present.
  8. D(238U) = D(234U) =D0,
    D(234Th) = D(234Pa) = D(238U) = 12,5 kBq,
    D(235U) = D0,
    D(231Th) = D(235U) =575 Bq.
  9. When t = 10.0 y the same radionuclides are present.
  10.  same as 8.


3:

  1. The shale contains all of the daughter products from 238U and 235U in equilibrium. In 10 g natural Uranium there is 125 kBq 238U and 5.75 kBq 235U this gives: [math]D_{(^{226}Ra)}=D_{(^{238}U)}=125\,kBq \rightarrow N=\frac{D}{\lambda}=9.1 \cdot 10^{15} = 3.4\cdot10^{-5}\, g[/math][math]D_{(^{223}Ra)}=D_{(^{235}U)}=5.75\,kBq \rightarrow N=\frac{D}{\lambda}=8.2 \cdot 10^{9} = 3.0\cdot10^{-5}\, g[/math]
  2. 210Pb exist as a daughter from 238U: [math]D_{(^{210}Pb)}=D_{(^{238}U)}=125 kBq \rightarrow N=\frac{D}{\lambda}=1.3\cdot 10^{14}=4.4\cdot10^{-8}\, g[/math]
  3. One of the daughters is 210Po, which is a alpha emitter and it is can do great harm if it gets inside the body. In addition Pb is a daughter of radon which makes it possible for it to enter the lungs.


4:

  1. It is easily accessible, it needs to be processed once to create many doses of medicine.
  2. The following nuclides can be extracted from a nuclide extracted: 68Ga, 90Y, 212Pb.
  3. 100 Mbq 201Tl = 9.11[math]\cdot[/math]1014 atoms = 3[math]\cdot[/math]10-7g.
  4. The amount inserted is so small it is not possible for it to be poisonous for humans.


5:

  1. After one half-life it will be 50 Mbq so 3.92 h.
  2. D1(44Ti) ≈ D0(44Ti) = 100 MBq, m(44Ti) = 2[math]\cdot[/math]10-5 g
    D1(44Sc) = 50 MBq, m(44Sc) = 7.4[math]\cdot[/math]10-11 g