Difference between revisions of "Radioactive Disintegration (Introduction to Radiochemistry)"

From mn/safe/nukwik
Jump to: navigation, search
Line 29: Line 29:
<br> <math>N_{2} = \frac{\lambda_{1}}{\lambda_{2}} N_{0} (e^{-\lambda_{1} t} -e^{-\lambda_{2}t}) \rightarrow N_{2} \frac{\lambda_{1}}{\lambda_{2}}N_{1}(t) (1-e^{-\lambda_{2}t}) </math>  
<br> <math>N_{2} = \frac{\lambda_{1}}{\lambda_{2}} N_{0} (e^{-\lambda_{1} t} -e^{-\lambda_{2}t}) \rightarrow N_{2} \frac{\lambda_{1}}{\lambda_{2}}N_{1}(t) (1-e^{-\lambda_{2}t}) </math>  
where&nbsp;<math>(1-e^{-\lambda_{2}t})</math>is the saturation factor and <math>\lambda_{2}- \lambda_{1}\cong \lambda_{2}</math>
where&nbsp;<math>(1-e^{-\lambda_{2}t}) (1-e<sup>-<math>\lambda</math><sub>2</sub>t</sup>)is the saturation factor and <math>\lambda_{2}- \lambda_{1}\cong \lambda_{2}</math>
The above equation can be further reduced by the assuption that ''t &gt;&gt; T<sub>1/2</sub>(2)&nbsp;(the observed time is much larger than the daughters half-life).''<span style="font-weight: bold;"</span>
<br> <math>N_{2} = \frac{\lambda_{1}}{\lambda_{2}}N_{0}e^{-\lambda_{1}}</math>

Revision as of 13:52, 2 July 2012

Radioactive disintegration is a stochastic proces, which means a random process, that can be described statistically. In this task you will learn about the secular radioactive equilibrium, and how any measure of a radioactive source is stated with uncertainty.

In a sample with N radioactive atoms of a particular nuclide, the number of atoms that disintegrates with the time dt will be proportional with N, see the formula below.

[math]-\frac{dN}{dt} = \lambda N \rightarrow \lambda N = A[/math],

where λ is the disintegration constant and A is the rate of disintegration.

The above equation can be solved into the following:

Nt = N0e - λt

N0 is the number of atoms of the nuclide at hand present at t = 0. The time past when half of the nuclides has disintegrated is called the half-life.

N = N0/2 can be placed into equation 1.1 to give the following connection between the disintegration constant and the half-life:

[math]\lambda = \frac{ln2}{T_{1/2}}[/math]

The half-life is a characteristic value for each radioactive nuclide. A radioactive nuclide will often disintegrate into a product that is radioactive as well: Nucleus 1[math]\rightarrow[/math]Nucleus 2 [math]\rightarrow[/math]Nucleus 3. The initial nucleus is usually referred to as the mother nuclide and the product as the daughter nuclide.

Assume that at the time t = 0, N0 of the mother is N1(t =0), N2(t=0) and N3(t=0), the change in number of mother- and daughter nuclides can then respectively be described through the following equations:

dN1 = -λN1dt

dN2λ1N1dt - λ2N2dt

[math]N_{2} = \frac{\lambda_{1}}{\lambda_{2} -\lambda_{1}} N_{0} (e^{-\lambda_{1} t} -e^{-\lambda_{2}t}) \rightarrow N_{2} = \frac{\lambda_{1}}{\lambda_{2} -\lambda_{1}} N_{1}(t) ( 1 - e^{-(\lambda_{2} - \lambda_{1}t)})[/math]

If the half-life of the mother is much less than that of the daughter, equation 1.2 can be simplified into:

[math]N_{2} = \frac{\lambda_{1}}{\lambda_{2}} N_{0} (e^{-\lambda_{1} t} -e^{-\lambda_{2}t}) \rightarrow N_{2} \frac{\lambda_{1}}{\lambda_{2}}N_{1}(t) (1-e^{-\lambda_{2}t}) [/math]

where [math](1-e^{-\lambda_{2}t})[/math]is the saturation factor and [math]\lambda_{2}- \lambda_{1}\cong \lambda_{2}[/math]

The above equation can be further reduced by the assuption that t >> T1/2(2) (the observed time is much larger than the daughters half-life).<span style="font-weight: bold;"</span>

[math]N_{2} = \frac{\lambda_{1}}{\lambda_{2}}N_{0}e^{-\lambda_{1}}[/math]