Difference between revisions of "Solutions 2"

From mn/safe/nukwik
Jump to: navigation, search
(Blanked the page)
Line 1: Line 1:
 +
1: <br>
  
 +
#1000g Th(NO3)4 = 2.083 mol arrow N(Th)= 1.25<math>\cdot</math>10<sup>24</sup> atoms. This is natural thorium, where the equilibrium in Th-series will lead to equal aktivity of <sup>232</sup>Th and <sup>228</sup>Th. Since <sup>232</sup>Th has a incredibly long half-life and <sup>228</sup>Th is short compared to this and we can approximate N(Th)<math>\approx</math>N(<sup>232</sup>Th)=1.25<math>\cdot</math>10^24 The disintegration for both is 1.96<math>\cdot</math>10<sup>6</sup>Bq.
 +
#6.43<math>\cdot</math>10<sup>-8</sup>g
 +
#10000 Bq <sup>228</sup>Ra = 2.62<math>\cdot</math>10<sup>12</sup> atoms = 90% arrow 100% 2.92<math>\cdot</math>10<sup>12</sup> atoms. If <sup>232</sup>Th is N1 and <sup>228</sup>Ra is N2 we can use the formulas for mother/daughter realations:<math>N_{2}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}N_{1,0}(e^{-\lambda 1\cdot t}-e^{-\lambda 2\cdot t}</math>&nbsp;
 +
 +
<br>
 +
 +
<br>

Revision as of 09:01, 19 June 2012

1:

  1. 1000g Th(NO3)4 = 2.083 mol arrow N(Th)= 1.25[math]\cdot[/math]1024 atoms. This is natural thorium, where the equilibrium in Th-series will lead to equal aktivity of 232Th and 228Th. Since 232Th has a incredibly long half-life and 228Th is short compared to this and we can approximate N(Th)[math]\approx[/math]N(232Th)=1.25[math]\cdot[/math]10^24 The disintegration for both is 1.96[math]\cdot[/math]106Bq.
  2. 6.43[math]\cdot[/math]10-8g
  3. 10000 Bq 228Ra = 2.62[math]\cdot[/math]1012 atoms = 90% arrow 100% 2.92[math]\cdot[/math]1012 atoms. If 232Th is N1 and 228Ra is N2 we can use the formulas for mother/daughter realations:[math]N_{2}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}N_{1,0}(e^{-\lambda 1\cdot t}-e^{-\lambda 2\cdot t}[/math]