Difference between revisions of "Solutions 6"

From mn/safe/nukwik
Jump to: navigation, search
Line 31: Line 31:
 
<br>2:&nbsp; <br> <br>  
 
<br>2:&nbsp; <br> <br>  
  
#<span class="texhtml"><sup>239</sup>''P'''u'''''</span>'''+ η <math>\rightarrow</math> <span class="texhtml"><sup>99</sup>''Y''</span> + + <span class="texhtml"><sup>139</sup>''C''</span>'''''s''<br>  
+
#<span class="texhtml"><sup>239</sup>''P'''u'''''</span>'''+ n <math>\rightarrow</math> <span class="texhtml"><sup>99</sup>''Y''</span> + 2n + <span class="texhtml"><sup>139</sup>''C''</span>'''''s''<br>  
 
#Q-value: 191.42MeV  
 
#Q-value: 191.42MeV  
#The energy which is released by disintegration after stability is reached:  
+
#The energy which is released by disintegration after stability is reached:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <sup>99</sup>Y: M(<sup>99</sup>Y)-M(<sup>99</sup>Ru)=17.4MeV &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <sup>139</sup>Cs: M(<sup>139</sup>Cs)-M(<sup>139</sup>La)=6.5MeV  
#<sup>99</sup>Y: M(<sup>99</sup>Y)-M(<sup>99</sup>Ru)=17.4MeV &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <sup>139</sup>Cs: M(<sup>139</sup>Cs)-M(<sup>139</sup>La)=6.5MeV  
 
 
#2/3 of this energy will disappear with neutrinos. Some of the disintegrations have too long half-lives to have an effect on the reactor safety.<br>
 
#2/3 of this energy will disappear with neutrinos. Some of the disintegrations have too long half-lives to have an effect on the reactor safety.<br>
  
 
<br>  
 
<br>  
  
1.0g <sup>239</sup>Pu = 2.5 *10<sup>21</sup> atomer. Number of fissions per seconds is σ*ϕ*Nt = 1.89*10<sup>14</sup>, which will give an effect of 3.6*10<sup>16</sup>MeV (5811W)<br>The formation of <sup>240</sup>Pu: σ*ϕ*N<sub>t</sub>= 6.8*10<sup>13</sup>s<sup>-1</sup>. After 100 days of irradiation 4*10<sup>-6</sup> g Pu will be made.<br>  
+
#1.0g <sup>239</sup>Pu = 2.5 10<sup>21</sup> atomer. Number of fissions per seconds is σ ϕ • N<sub>t</sub> = 1.89 10<sup>14</sup>, which will give an effect of 3.6 10<sup>16</sup>MeV (5811W)
 +
#The formation of <sup>240</sup>Pu: σ ϕ N<sub>t</sub>= 6.8 10<sup>13</sup>s<sup>-1</sup>. After 100 days of irradiation 4 10<sup>-6</sup> g Pu will be made.<br>
  
 
'''3:''' <br>  
 
'''3:''' <br>  
Line 47: Line 47:
 
#<span class="texhtml"><sup>232</sup>''T''''h'''''</span>'''+&nbsp;η <math>\rightarrow</math> <span class="texhtml"><sup>233</sup>''T''</span>'''''h'' <math>\rightarrow</math> <sup>233</sup>Pa <math>\rightarrow</math> <sup>233</sup>U<br>  
 
#<span class="texhtml"><sup>232</sup>''T''''h'''''</span>'''+&nbsp;η <math>\rightarrow</math> <span class="texhtml"><sup>233</sup>''T''</span>'''''h'' <math>\rightarrow</math> <sup>233</sup>Pa <math>\rightarrow</math> <sup>233</sup>U<br>  
 
#<sup>133</sup>I.  
 
#<sup>133</sup>I.  
#One ton <sup>232</sup>Th equals to 2.6*10<sup>27</sup> atoms. The rate of formation for neutron capture (<sup>233</sup>Th): σ*ϕ*N<sub>t</sub> = 7.37*10^<sup>24</sup>cm<sup>2</sup>*10<sup>14</sup><span class="texhtml">η</span> cm-2s-1*2.6*10<sup>27</sup>atomer= 1.91*10<sup>18</sup>atomer <sup>s-1</sup>  
+
#One ton <sup>232</sup>Th equals to 2.6*10<sup>27</sup> atoms. The rate of formation for neutron capture (<sup>233</sup>Th): σ ϕ N<sub>t</sub> = 7.37 10<sup>24</sup>cm<sup>2</sup> 10<sup>14</sup><span class="texhtml"><span style="font-family: sans-serif;">n</span></span> cm<sup>-2</sup>s-1 2.6 10<sup>27</sup>atomer= 1.91 10<sup>18</sup>atoms s<sup>-1</sup>  
 
#It will take 37hours of irradiation to form enough <sup>233</sup>Th to give 100g <sup>233</sup>U, but disintegration of <sup>233</sup>Pa to <sup>233</sup>U must be waited.  
 
#It will take 37hours of irradiation to form enough <sup>233</sup>Th to give 100g <sup>233</sup>U, but disintegration of <sup>233</sup>Pa to <sup>233</sup>U must be waited.  
#100g <sup>233</sup>U: D=λN = 3.56*10<sup>10</sup>Bq(35.6Gbq)<br>
+
#100g <sup>233</sup>U: D=λN = 3.56 10<sup>10</sup>Bq(35.6Gbq)<br>
  
 
<br>  
 
<br>  
  
 
<br>
 
<br>

Revision as of 11:29, 19 June 2012

Nuclear reactions and nuclear reactors



1: It is noteworthy to notice the Q-value for the neutron capture and the change in binding energy per nucleon for each of the isotope pairs, see table 6.2.

Table 6.2: Calculated Q-values and change in binding energy per nukleon
Pair of nuclide
Q-value for neutron capture (MeV)
Change in EB/A (MeV)
235U/236U
6.55
-0.004
238U/239U
4.81
-0.012
239Pu/240Pu
6.53
-0.003


The nuclide pair 238U/239U have a significantly lower Q-value and a significantly bigger fall in EB/A than the other pairs. This can be explained by the pair-pair configuration in the 238U nucleus, which makes it less favorable to bind another neutron. On the other hand, for pair-odd nuclides it is much more favorable to bind another neutron to achieve a pair-pair configuration. This is shown from the cross sections for interaction with thermal neutrons (σ and σf).


2: 

  1. 239Pu+ n [math]\rightarrow[/math] 99Y + 2n + 139Cs
  2. Q-value: 191.42MeV
  3. The energy which is released by disintegration after stability is reached:                        99Y: M(99Y)-M(99Ru)=17.4MeV                                                                                       139Cs: M(139Cs)-M(139La)=6.5MeV
  4. 2/3 of this energy will disappear with neutrinos. Some of the disintegrations have too long half-lives to have an effect on the reactor safety.


  1. 1.0g 239Pu = 2.5 • 1021 atomer. Number of fissions per seconds is σ • ϕ • Nt = 1.89 • 1014, which will give an effect of 3.6 • 1016MeV (5811W)
  2. The formation of 240Pu: σ • ϕ • Nt= 6.8 • 1013s-1. After 100 days of irradiation 4 • 10-6 g Pu will be made.

3:


  1. 232T'h+ η [math]\rightarrow[/math] 233Th [math]\rightarrow[/math] 233Pa [math]\rightarrow[/math] 233U
  2. 133I.
  3. One ton 232Th equals to 2.6*1027 atoms. The rate of formation for neutron capture (233Th): σ • ϕ • Nt = 7.37 • 1024cm2 • 1014n cm-2s-1 • 2.6 • 1027atomer= 1.91 • 1018atoms s-1
  4. It will take 37hours of irradiation to form enough 233Th to give 100g 233U, but disintegration of 233Pa to 233U must be waited.
  5. 100g 233U: D=λN = 3.56 • 1010Bq(35.6Gbq)