Solutions 7

From mn/safe/nukwik
Revision as of 12:09, 22 June 2012 by Hansvl@uio.no (talk | contribs)

Jump to: navigation, search

This solution set contains a large number of errors, and is under revision. It will be updated as soon as possible.

Return to Problem Solving Sets

These exercises it might be usfull to have wallet cards they can for instance be found at Nudat 2

1:

  1. It is in total 3.58 mol = 2.1562[math]\cdot[/math] 1024 atoms of potassium in a average human where 12% that is 2.5876[math]\cdot[/math]1020 is 40K
    [math]T_{(1/2)}=1.28\cdot10^{9}=4.0283 \cdot 10^{16}\,s[/math]
    [math]\lambda= \frac{\ln 2}{T_{(1/2)}} = \frac{ln2}{4.0283\cdot 10^{16}}=1.7206\cdot 10^{-17}\, s^{-1}[/math]
    [math]D=\lambda \cdot N= 2.5876\cdot10^{20}\cdot 1.7206\cdot 10^{-17} s^{-1}=4452.45\, Bq[/math]
  2. First calculate the dose per second:
    [math]4452.45\, Bq \cdot 400\, keV Bq^{-1} = 1.78\cdot 10^{6} keV s^-1[/math]
    Then calculate it to joule per second:
    [math]1.602\cdot 10^{-16}\, J/keV \cdot 1.78\cdot 10^{6}\, keV/s = 2.8534\cdot 10^{-10}\, J/s[/math]
    which gives:
    [math]2.8534\, J/s \cdot\frac{10^{-10}}{70\, kg} = 4.076\cdot 10^{-12} J/(kg s)[/math]
    As the dose can be assumed to be constant trough a human life for each year we will recive a dose of:
    [math]3.145\cdot 10^7 \, \frac{s}{year} \cdot 4.076\cdot 10^{-12}\, \frac{J}{kg\, s} = 1.28 10^-4\, \frac{Gy}{year} = 0.13\, \frac{mGy}{year}[/math]