Biopython

Karin Lagesen

karin.lagesen@bio.uio.no




Object oriented programming

* Biopython Is object-oriented

 Some knowledge helps understand how
biopython works

 OOP is a way of organizing data and
methods that work on them In a coherent
package

 OOP helps structure and organize the
code




Classes and objects

e A class:

* IS a user defined type
IS a mold for creating objects

« specifies how an object can contain and
process data

e represents an abstraction or a template for
how an object of that class will behave

* An object is an instance of a class

» All objects have a type — shows which
class they were made from




Attributes and methods

» Classes specify two things:
e attributes — data holders
e methods — functions for this class

o Attributes are variables that will contain
the data that each object will have

 Methods are functions that an object of
that class will be able to perform




Class and object example

Class: MySeq
MySeq has:
e attribute length
 method translate
An object of the class MySeq Is created like this:
e myseq = MySeq(“ATGGCCG")
Get sequence length:
e myseq.length
Get translation:

e myseqg.translate()

-




Summary

* An object has to be instantiated, 1.e. =8 |
created, to exist e

« Every object has a certain type, i.e. is of a

certain class INi§E
 The class decides which attributes and iR

methods an object has mivaudil
« Attributes and methods are accessed l )

using . after the object variable name




Biopython

» Package that assists with processing
biological data

e Consists of several modules — some with
common operations, some more
specialized

* \Website: biopython.org




Biopython must be installed

* Not part of python per se, has to be installed

e Several versions of python available, not all
compatible with biopython

* On freebee, several python versions available:

[karinlag@freebee]~/teaching% which python
/usr/bin/python
[karinlag@freebee]~/teaching?

« module load python2 makes different version
of python available:

[karinlag@freebee]~/teaching% module load python2
[karinlag@freebee]~/teaching% which python
/cluster/software/VERSIONS/python2-2.7.3/bin/python




Working with sequences

e Biopython has many ways of working with
sequence data

 Covered today:

* Alphabet
e Seq
e SegRecord

e SeqlO

e Other useful classes for working with
alignments, blast searches and results etc are
also avalilable, not covered today

;




Class Alphabet

Every sequence needs an alphabet
CCTTGGCC — DNA or protein?

Biopython contains several alphabets

« DNA

« RNA

* Protein

 the three above with IUPAC codes
e ...and others

Can all be found in Bio.Alphabet package




Alphabet example

Go to freebee

Do module load python2 (necessary to find biopython

modules) — start python |
NOTE: have to import

Alphabets to use them
>>> import Bio.Alphabet
>>> Bio.Alphabet.ThreeLetterProtein.letters
[{Alal| | [Asx' , /Cya 7 Tasp',| lelu'l ['Phelll llGlyl foHisg, i T
‘Lys )t Leu, -t Meb i sl ASH I, ([P0 ', | Gln' | HiFg— - Ser= 1\ tThri,
LSeet, 'Val', [“Pep'; " Xaa'l; [Tyr'l, |'Glx"']
>>> from Bio.Alphabet import IUPAC
>>> IUPAC.IUPACProtein.letters
'ACDEFGHIKLMNPQRSTVWY'
>>> TUPAC.unambiguous dna.letters
'GATC'
p BB

14

;




Packages, modules and
classes

What happens here?

>>> from Bio.Alphabet import IUPAC
>>> TUPAC.IUPACProtein.letters

Bio and Alphabet are packages

e packages contain other packages and modules
IUPAC Is a module

 a module is a file with python code

IUPAC module contains class IUPACProtein and
other classes specifying alphabets

JUPACProtein has attribute letters




 Represents one sequence with its

Se(q

alphabet
e Methods:

translate()
transcribe()
complement ()

reverse complement()

-




Using Seq

>>> from Bio.Seq import Seq Import classes

>>> import Bio.Alphabet Create object
>>> seq = Seq("CCGGGTT", Bio.Alphabet.IUPAC.unambiguous dna)
>>> seq

Seq('CCGGGTT', IUPACUnambiguousDNA())

>>> seq.transcribe()

Seq( 'CCGGGUU', IUPACUnambiguousRNA()) Use methods
>>> seqg.translate()

Seq('PG', IUPACProtein())

>>> seq = Seq("CCGGGUU", Bio.Alphabet.IUPAC.unambiguous rna)
New object, different alphabet

>>> seq.transcribe()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/site/VERSIONS/python-2.6.2/1ib/python2.6/site-packages/Bio/Seq.py",
line 830, in transcribe
raise ValueError("RNA cannot be transcribed!")
ValueError: RNA cannot be transcribed!

>>> seq.translate() | |

>>> methods make sense

Id
T
e 1 1
:H' 3
, 2
i ~
i =
— _4._
——
"1_-|-r.._
A
I_-\.I. L |
HWIN
| h
h L -
=
I L
i
_.-'i.-"
v
'_.i
= s\
T
U ]
o




Se(q as a string

* Most string methods work on Seqs
o |f string Is needed, do str(seq)

>>> seq = Seq('CCGGGTTAACGTA',Bio.Alphabet.IUPAC.unambiguous_dna)
>>> seq[:5]

Seq('CCGGG', IUPACUnambiguousDNA())
>>> len(seq)

13

>>> seq.lower()
Seq('ccgggttaacgta', DNAAlphabet())
>>> print seq

CCGGGTTAACGTA

>>> mystring = str(seq)

>>> print mystring

CCGGGTTAACGTA

>>> type(seq)

<class 'Bio.Seq.Seq'>

>>> type(mystring)
i o= il T 0 How to check what class

>>> or type an object is from

Id
.-\‘l'l b= J
L B |
".*ﬁl‘\_ a '
g W
™
1
— ___L
- -
"1_—|-r_
f_-
_h-ll _\ -
HWIN
E N
| _.-"'l.i'
I [ =K
e
. L
"
| LS
=i I |
-
=gk =
]
1




SegRecord

Seq contains the sequence and alphabet

But sequences often come with a lot more

SegRecord = Seq + metadata

Malin attributes:

e id — name or identifier
e seq — seq object containing the sequence

>>> seq EXxisting sequence

Seq( 'CCGGGTTAACGTA', IUPACUnambiguousDNA()) SeqRecord is a class
>>> from Bio.SeqRecord import SegRecord .

>>> seqRecord = SeqgRecord(seq, 1id='001"') fqundlnsuhethe

S trdegRecord Bio.SeqRecord module
SeqgRecord(seqg=Seq( 'CCGGGTTAACGTA', IUPACUnambiguousDNA()),

id='001', name='<unknown name>',6 description='<unknown description>',

dbxrefs=[])
>>>




SeqRecord attributes

 From the biopython webpages:

Main attributes:

id - Identifier such as a locus tag (string)
seq - The sequence itself (Seq object or similar)

Additional attributes:

name - Sequence name, e.g. gene name (string)

description - Additional text (string)

dbxrefs - List of database cross references (list of strings)

features - Any (sub)features defined (list of SeqFeature objects)

annotations - Further information about the whole sequence (dictionary)
Most entries are strings, or lists of strings.

letter_annotations - Per letter/symbol annotation (restricted dictionary). This holds
Python sequences (lists, strings or tuples) whose length matches that of the
sequence. A typical use would be to hold a list of integers representing
sequencing quality scores, or a string representing the secondary structure.

Id
Ay
LT 1 1
E.I‘L 3
, 2
-\"l
=
— _4._
——
1
i
_Il _\ -
V1T
| h
|} ]~
wLLR
L
i
| A
- Y.
e 11 |
[ 1
-'\_\_:: -
U ]
-E,_\




SeqRecords In practice...

>>> from Bio.SeqRecord import SegRecord
>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import DNAAlphabet

Import necessary classes

>>> sedRecord = SeqRecord(Seq('GCAGCCTCAAACCCCAGCTG',
.. DNAAlphabet), id = 'NM 005368.2', name = 'NM 005368"',

.. description = 'MyoglobEn var—1-'y, Create object
.. dbxrefs = ['GeneID:4151', 'HGNC:6915'])
>>>

>>> seqgRecord
SeqRecord(seq=Seq('GCAGCCTCAAACCCCAGCTG',
<class 'Bio.Alphabet.DNAAlphabet'>), id='NM 005368.2"',
name='NM 005368', description='Myoglobin var 1',

dbxrefs=[ 'GeneID:4151', 'HGNC:6915'])

>>>

Print object

=]




SeqlO

How to get sequences in and out of files

Retrieves sequences as SegRecords, can
write SegRecords to files

Reading:

e SeqgIO.parse(filehandle, format)

e returns a generator that gives SegRecords
Writing:

e SeqlO.write(SeqRecord(s), filehandle,
format)

NOTE: examples in this section from http.//biopython.org/wiki/SeqlO




SeqlO formats

 List: http://biopython.org/wiki/SeqlO
 Some examples:

» fasta

e genbank

» several fastg-formats
e ace

* Note: a format might be readable but not
writable depending on biopython version




Reading a file

from Bio import SeqIO

fh = open("example.fasta", "r")

for record in SeqIO.parse(fh,"fasta") :
print record.id

fh.close()

e SeglO.parse returns a SeqRecorc

* An iterator will give you the next e
the next time it is called

iterator
ement

» Useful because If a file contains many
records, we avoid putting all into memory

all at once




Parsing fasta files

e Copy fasta file containing 3 sequences

cp ~karinlag/teaching/mb.fsa .

 |n python interactive shell:

>>> from Bio import SeqIO Import modules, open the file

>>> fh = open("mb.fsa", "r")

>>> for record in SeqIO.parse(fh, "fasta"): Per element in file:
print record.id Print the identifier id

pint |recoreysealilil Print the first ten sequence letters
NM 005368.2

GCAGCCTCAA

XM _001081975.2

CCTCTCCCCA

NM 001164047.1

TAGCTGCCCA

>>>

Id
HIT
LT 11
".*ﬁk a '
8 2
-\"l
1
— _4._
T
"1_-|-r_
A
I_'\.I. L |
HWIN
| h
h |l L]
I ~3-d=E
I %
1Py
; -
|
o
L=
= o P |
L
= '\_\_:: -
A ]
o




convert.py

e Goal: convert from genbank to fasta
e cp ~karinlag/teaching/mb.gbk .

e Create script file:

- Import both sys and SeqlO
- Take in file name as sys.argv[1]

- For each record in file (remember.genbank!)
 Print record
- Close file

- Save as convert.py
* Run script with mb.gbk

Ly
L




convert.py

[karinlag@freebee]~/teaching% cat convert.py
import sys

from Bio import SeqIO Need to import SeglO, otherwise

methods not available!

# Open input file
fh = open(sys.argv[l], "r")

for record in SeqIO.parse(fh, "genbank"):
# print the entire record
print record

fh.close()

[karinlag@freebee]~/teaching%

One genbank entry is
one record

=]




convert.py

 Modification 1:

=Print
e The id
e The description
 The sequence

-----




convert.py

[karinlag@freebee]~/teaching% cat convertl.py
from Bio import SeqIO
import sys

#, Opentithe. input=file
fh = open(sys.argv[l], "r")

for record in SeqIO.parse(fh, "genbank"):
# Print only id, description and sequence
print record.id
print record.description
print record.seq
fh.close()
[karinlag@freebee]~/teaching$

Select only the attributes
that you actually want!

=]




Modifications

Figure out how to:

 print the description of each genbank entry
* which annotations each entry has
e print the taxonomy for each entry

Description:

e segRecord.description
Annotations:

e segRecord.annotations.keys()
Taxonomy:

» segdRecord.annotations['taxonomy']

Ly
L




Writing files

from Bio import SeqIO

sequences = ... # add code here

output handle = open("example.fasta", "w")
SeqIO.write(sequences, output handle, "fasta")
output handle.close()

* Note: sequences Is here a list containing
several SeqRecords

» Can write any iterable containing
SegRecords to a file

» Can also write a single sequence

A

Ly
L




convert.py

 Modification 2:

- Get output file name as sys.argv|2]
- Open outfile

— Per record,
e Write it to file In fasta format
- Close input file

- Close output file

* Bonus guestion: can you think of how you
would add the organism name to the id?




convert.py

[karinlag@freebee]~/teaching® cat convert2.py
from Bio import SeqIO
import sys

# Open the input file

fh = open(sys.argv[l], "r") Open both input
# Open the output file and output file
fo = open(sys.argv[2], "w")

for record in SeqIO.parse(fh, "genbank"):

# Use SeqIO to write properly

# formatted record

SeqIO.write(record, fo, "fasta") Write out record
fh.close()
fo.close()
# ...and closing files
[karinlag@freebee]~/teaching$%

1]




Bonus question

 How to add organism name:

- get the taxonomy list from the annotation
dictionary

- get the last element of the list with slicing off
-1, the last element

— concat the record.id with the orgname

orgname = record.annotations['taxonomy'][-1]
print record.id + " " + orgname

g 11




Tips and hints

* Always comment your code — easier to
understand later

* Never write lots of code without testing
while writing — makes for less code to
debug

* Always test on input where you know what
the results should be

* |f it went to easy, too well or too fast: it is
probably wrong!




Learning more

e Recommended book:

- Sebastian Bassi:
Python for Bioinformatics

* WWW.pPYython.org

- has lots of documentations
and beginner tutorials

* Google

PYTHON FOR
BIOINFORMATICS




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

