
16/11/2016

1

Biopython

MBV-INFx410

Fall 2016

Object oriented programming

• Biopython is object-oriented

• Some knowledge helps understand how
biopython works

• OOP is a way of organizing data and
methods that work on them in a coherent
package

• OOP helps structure and organize the
code

Classes and objects

• A class:

- is a user defined type

- is a mold for creating objects

- specifies how an object can contain and
process data

- represents an abstraction or a template for
how an object of that class will behave

• An object is an instance of a class

• All objects have a type – shows which
class they were made from

Attributes and methods

• Classes specify two things:

- Attributes – data holders

- Methods – functions for this class

• Attributes are variables that will contain
the data that each object will have

• Methods are functions that an object of
that class will be able to perform

16/11/2016

2

Fake class and object example

• Class: MyCup

• MyCup has:

- attribute contents

- method heat

• An object of the class MyCup is created like this:

- mycup = MyCup(“Water”)

• Here: the attribute contents is assigned the value “Water”

• Find out what the content is (access attribute):

- mycup.contents– will report the contents

• Heat contents (use method):

- mycup.heat() – will heat contents, in this case “Water”

Summary

• An object has to be instantiated, i.e.
created, to exist

• Every object has a certain type, i.e. is of a
certain class

• The class decides which attributes and
methods an object of that class has

• Attributes and methods are accessed
using . after the object variable name

Biopython

• Package that assists with processing
biological data

• Consists of several modules – some with
common operations, some more
specialized

• Website: biopython.org

Working with sequences

• Biopython has many ways of working with
sequence data

• Focus on:

- Alphabet package

- Seq class

- SeqRecord class

- SeqIO package

• Other useful classes for working with
alignments, blast searches and results etc
are also available, not covered today

16/11/2016

3

Class Alphabet

• Every sequence needs an alphabet

- CCTTGGCC – DNA or protein?

• Biopython contains several alphabets

- DNA

- RNA

- Protein

- the three above with IUPAC codes

- ...and others

• Can all be found in Bio.Alphabet package

Alphabet example

>>> import Bio.Alphabet
>>> Bio.Alphabet.ThreeLetterProtein.letters
['Ala', 'Asx', 'Cys', 'Asp', 'Glu', 'Phe', 'Gly', 'His', 'Ile',
'Lys', 'Leu', 'Met', 'Asn', 'Pro', 'Gln', 'Arg', 'Ser', 'Thr',
'Sec', 'Val', 'Trp', 'Xaa', 'Tyr', 'Glx']
>>> from Bio.Alphabet import IUPAC
>>> IUPAC.IUPACProtein.letters
'ACDEFGHIKLMNPQRSTVWY'
>>> IUPAC.unambiguous_dna.letters
'GATC'
>>>

NOTE: have to import
Alphabets to use them

Can now print all of the
common three letter
abbreviations

Can work with both
ambigous and
unabigous sequences

Packages, modules and
classes

Module

• Is a text file
• Can contain classes

Class

• Contains data
• Has methods

that work on
the data Package

• Directory
containing one or
more modules
and other
packages

Class

• Contains data
• Has methods

that work on
the data

Class

• Contains data
• Has methods

that work on
the data

Module

• Is a text file
• Can contain classes

Module

• Is a text file
• Can contain classes

Packages, modules and
classes

• What happens here?

>>> from Bio.Alphabet import IUPAC
>>> IUPAC.IUPACProtein.letters

• Bio and Alphabet are packages

- packages contain other packages and modules

• IUPAC is a module

- a module is a file with python code

- a module can contain 0 to many classes

• IUPAC module contains class IUPACProtein and other
classes specifying alphabets

• IUPACProtein class specifies objects that have the
attribute letters

16/11/2016

4

Class Seq

• Represents one sequence with its alphabet

newseq = Seq(string, alphabet)

• Has attributes that keeps the string and the
alphabet

• Methods:

- newseq.translate()

- newseq.transcribe()

- newseq.complement()

- newseq.reverse_complement()

- ...

Using Seq

>>> from Bio.Seq import Seq
>>> import Bio.Alphabet
>>> seq = Seq("CCGGGTT", Bio.Alphabet.IUPAC.unambiguous_dna)
>>> seq
Seq('CCGGGTT', IUPACUnambiguousDNA())
>>> seq.transcribe()
Seq('CCGGGUU', IUPACUnambiguousRNA())
>>> seq.translate()
Seq('PG', IUPACProtein())
>>> seq = Seq("CCGGGUU", Bio.Alphabet.IUPAC.unambiguous_rna)
>>> seq.transcribe()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/site/VERSIONS/python-2.6.2/lib/python2.6/site-packages/Bio/Seq.py",

line 830, in transcribe
raise ValueError("RNA cannot be transcribed!")

ValueError: RNA cannot be transcribed!
>>> seq.translate()
Seq('PG', IUPACProtein())
>>>

Import classes
Create object

Use methods

New object, different alphabet

Alphabet dictates which
methods make sense

Seq as a string

• Most string methods work on Seqs

• If string is needed, do str(seq)

>>> seq = Seq('CCGGGTTAACGTA',Bio.Alphabet.IUPAC.unambiguous_dna)
>>> seq[:5]
Seq('CCGGG', IUPACUnambiguousDNA())
>>> len(seq)
13
>>> seq.lower()
Seq('ccgggttaacgta', DNAAlphabet())
>>> print seq
CCGGGTTAACGTA
>>> mystring = str(seq)
>>> print mystring
CCGGGTTAACGTA
>>> type(seq)
<class 'Bio.Seq.Seq'>
>>> type(mystring)
<type 'str'>
>>>

Can check what class
or type an object is from

Slicing

Length of Seq

Lower case

Printing

Convert as needed

SeqRecord

• Seq contains the sequence and alphabet

• But sequences often come with a lot more

• SeqRecord = Seq + metadata

• Main attributes:

- id – name or identifier

- seq – Seq object containing the sequence

16/11/2016

5

SeqRecord example

>>> seq
Seq('CCGGGTTAACGTA', IUPACUnambiguousDNA())
>>> from Bio.SeqRecord import SeqRecord
>>> seqRecord = SeqRecord(seq, id='001')
>>> seqRecord
SeqRecord(seq=Seq('CCGGGTTAACGTA', IUPACUnambiguousDNA()),
id='001', name='<unknown name>', description='<unknown description>',
dbxrefs=[])
>>>

Existing seq object

SeqRecord is a class
found inside the
Bio.SeqRecord module

Using existing seq object
to create a SeqRecord
with an identifier

Several other attributes
that for now don’t have
any value

SeqRecord attributes

Main attributes:

id - Identifier such as a locus tag (string)
seq - The sequence itself (Seq object or similar)

Additional attributes:

name - Sequence name, e.g. gene name (string)
description - Additional text (string)
dbxrefs - List of database cross references (list of strings)
features - Any (sub)features defined (list of SeqFeature objects)
annotations - Further information about the whole sequence (dictionary)

Most entries are strings, or lists of strings.
letter_annotations - Per letter/symbol annotation (restricted dictionary). This holds

Python sequences (lists, strings or tuples) whose length matches that of the
sequence. A typical use would be to hold a list of integers representing
sequencing quality scores, or a string representing the secondary structure.

• From the biopython webpages:

SeqRecords in practice...
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import DNAAlphabet

>>> seqRecord = SeqRecord(Seq('GCAGCCTCAAACCCCAGCTG',
… DNAAlphabet), id = 'NM_005368.2', name = 'NM_005368',
… description = 'Myoglobin var 1',
… dbxrefs = ['GeneID:4151', 'HGNC:6915'])
>>>

>>> seqRecord
SeqRecord(seq=Seq('GCAGCCTCAAACCCCAGCTG',
<class 'Bio.Alphabet.DNAAlphabet'>), id='NM_005368.2',

name='NM_005368', description='Myoglobin var 1',
dbxrefs=['GeneID:4151', 'HGNC:6915'])
>>>

Import necessary classes

Create object,assign
values to attributes

Print object

The SeqIO package

• How to get sequences in and out of files

• Retrieves sequences as SeqRecords, can write
SeqRecords to files

• Reading:

- SeqIO.parse(filehandle, format)

- returns an iterator that gives SeqRecords

• Writing:

- SeqIO.write(SeqRecord(s), filehandle, format)

• Note: both input and output files can contain
several sequences

16/11/2016

6

SeqIO formats

• List: http://biopython.org/wiki/SeqIO

• Some examples:

- fasta

- genbank

- several fastq-formats

- ace

• Note: a format might be readable but not
writable depending on biopython version

Reading a file

from Bio import SeqIO
fh = open("example.fasta", "r")
for record in SeqIO.parse(fh,"fasta") :

print record.id
fh.close()

• SeqIO.parse returns a SeqRecord iterator

• An iterator will give you the next element
the next time it is called(used)

• Useful because if a file contains many
records, we avoid putting all into memory
all at once

Parsing fasta files

>>> from Bio import SeqIO
>>> fh = open("mb.fsa", "r")
>>> for record in SeqIO.parse(fh, "fasta"):
... print record.id
... print record.seq[:10]
...
NM_005368.2
GCAGCCTCAA
XM_001081975.2
CCTCTCCCCA
NM_001164047.1
TAGCTGCCCA
>>>

Import modules, open the file

Per element in file:

Print the identifier id
Print the first ten sequence letters

• In python interactive shell:

convert.py

• Goal: convert from genbank to fasta

• Create script file:

- Import SeqIO

- Open the file

- For each entry (record) in file
• print record

- Close file

16/11/2016

7

convert.py – read sequences

import sys
from Bio import SeqIO

Open the input file
fh = open(sys.argv[1], "r")

for record in SeqIO.parse(fh, "genbank"):
Print the entire record
print record

fh.close()

Need to import SeqIO, otherwise
methods not available!

Each genbank entry is printed

Opening file, as before

Per genbank record in file

Closing file, as before

Try it out with mb.gbk!

convert.py results 1

ID: NM_005368.2
Name: NM_005368
Description: Homo sapiens myoglobin (MB), transcript variant 1, mRNA.
Number of features: 11
/comment=REVIEWED REFSEQ: This record has been curated by NCBI staff. The
reference sequence was derived from BU585249.1, BQ956082.1 and
BC014547.1.
On Mar 4, 2004 this sequence version replaced gi:4885476.
Summary: This gene encodes a member of the globin superfamily and
is expressed in skeletal and cardiac muscles. The encoded protein
is a haemoprotein contributing to intracellular oxygen storage and
transcellular facilitated diffusion of oxygen. At least three
alternatively spliced transcript variants encoding the same protein
have been reported. [provided by RefSeq, Jul 2008].
…..

convert.py take 2

• Modification: get only sequence and id
information

• Fasta description line consists of id and
description

• Print

- The id

- The description

- The sequence

convert.py take 2

import sys
from Bio import SeqIO

Open the input file
fh = open(sys.argv[1], "r")

for record in SeqIO.parse(fh, "genbank"):
Print only id, description and sequence
print record.id
print record.description
print record.seq

fh.close()

Select only the attributes
that you actually want!
Available since the parser
has read it in the file

16/11/2016

8

convert.py results 2

NM_005368.2
Homo sapiens myoglobin (MB), transcript variant 1, mRNA.
GCAGCCTCAAACCCCAGCTGTTGGGGCCAGGACACCC
AGTGAGCCCATACTTGCTCTTTTTGTCTTCTTCAGACTG
CGCCATGGGGCTCAGCGACGGGGAATGGCAGTTGGTG
CTGAACGTCTGGGGGAAGGTGGAGGCTGACATCCCAG
GCCATGGGCAGGAAGTCCTCATCAGGCTCTTTAAGGGT
CACCCAGAGACTCTGGAGAAGTTTGACAAGTTCAAGCA
…..
XM_001081975.2
PREDICTED: Macaca mulatta myoglobin, transcript variant 1 (MB), mRNA.
CCTCTCCCCACCCCCAGCCCTGGCCGCTTGGCTGGAAG
CTCTGCGAGGACAGCTGGGGAGAAGGGGAGCTGTGAC
TGCGCCATGGGGCTCAGCGACGGGGAATGGCAGTTGG
…..

Other available info

• Description:

- seqRecord.description

• Annotations:

- seqRecord.annotations.keys()

• Taxonomy:

- seqRecord.annotations['taxonomy']

Writing files

from Bio import SeqIO
sequences = ... # add code here
output_handle = open("example.fasta", "w")
SeqIO.write(sequences, output_handle, "fasta")
output_handle.close()

• Note: sequences is here a list containing several
SeqRecords

• Can write any iterable containing SeqRecords to
a file

• By specifying format, we specify what
information to print out – no need to specify
what we want to write out

convert.py take 3

• Modification: write output to file

- Open outfile

- Per record,
• Write it to file in fasta format

- Close input file

- Close output file

16/11/2016

9

convert.py take 3

import sys
from Bio import SeqIO

Open the input file
fh = open(sys.argv[1], "r")
Open the output file
fo = open(”mb.fsa”, "w")

for record in SeqIO.parse(fh, "genbank"):
Use SeqIO to write properly
formatted record
SeqIO.write(record, fo, "fasta")

...and closing files
fh.close()
fo.close()

Open both input
and output file

Write out record
in fasta format

Per entry in the
gbk file

Close both input
and output file

name_w_organism.py

• Starting point: genbank file

• Goal: print fasta file with description lines that
begin with organism name

• Process:

- Read in fasta sequences as SeqRecords

- Open output handle

- Per fasta sequence:

• figure out the organism name

• change description line

• print to output file

- Close files

name_w_organism.py
import sys
from Bio import SeqIO

Open the input file
fh = open(sys.argv[1], "r")
Open the output file
fo = open(sys.argv[2], "w")

for record in SeqIO.parse(fh, "genbank"):
using SeqRecord annotation dictionary
to get the correct name
organism = record.annotations['organism']
species_name = organism.split()[1]
adding it onto the record id
record.id = species_name + "_" + record.id
SeqIO.write(record, fo, "fasta")

fh.close()
fo.close()

Tips and hints

• Always comment your code – easier to
understand later

• Never write lots of code without testing
while writing – makes for less code to
debug

• Always test on input where you know what
the results should be

• If it went to easy, too well or too fast: it is
probably wrong!

16/11/2016

10

Learning more

• Recommended book:

Sebastian Bassi:
Python for Bioinformatics

• www.python.org

- has lots of documentations
and beginner tutorials

• Google

