

MBV4410/9410 Fall 2016

Dec. 5 - Analysing transcriptome data (using R) - part 1

Outline

Monday

Before lunch:

- Transcriptomics (lectures/practical)
 - Sequencing technologies
 - Transcriptome assembly
 - Gene expression

After lunch:

- Basic R/RStudio (lecture)
- Installing/setting up R/RStudio
- Basic R (practical)

Tuesday

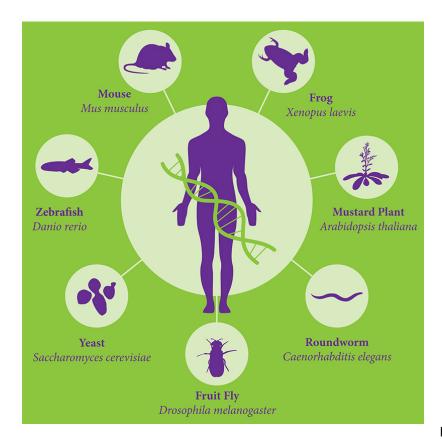
Before lunch:

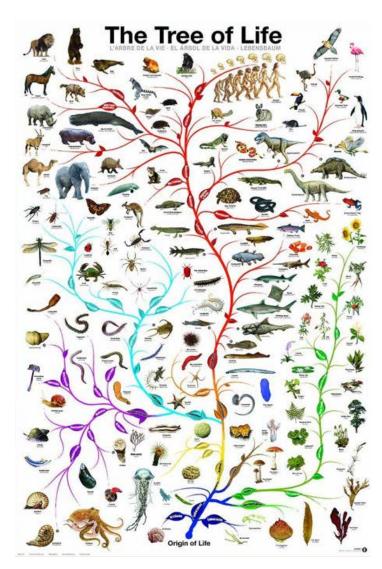
- Transcriptomics (lectures/practical)
 - Experimental design
 - Quality assessement
 - Differential gene expression

After lunch:

- Bioconductor (lecture)
- Transcriptomics/DE-test (lecture/practical)

Moving away from model organisms





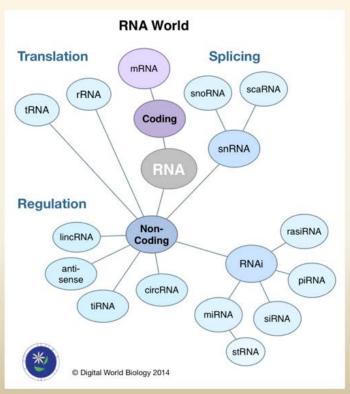
UiO • Department of Biosciences

University of Oslo

Transcription – all the RNAs

A transcriptome is a snapshot in time of all RNAs

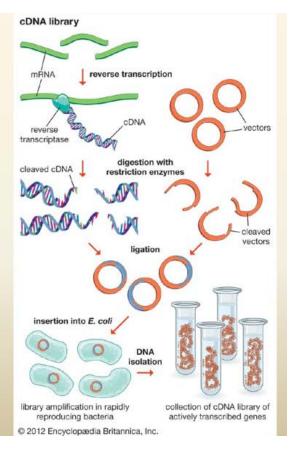
present in a sample isolated from a given cell, tissue or organism



Obtaining the transcriptome (not many years ago)

Sanger cDNA library sequencing

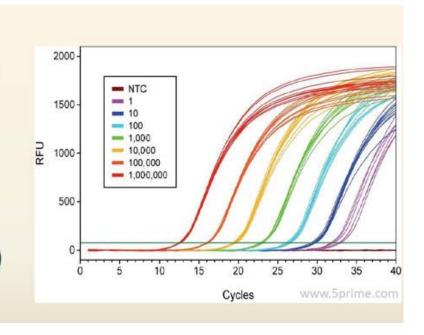
- mRNA converted to the more stable cDNA
- cDNA cleaved and ligated into vectors
- Vectors amplified (cloned) in E. coli
- DNA isolated = cDNA library
- Sequenced on Sanger
- Low throughput
- High accuracy



Obtaining the transcriptome (not many years ago)

Quantitative RT-PCR

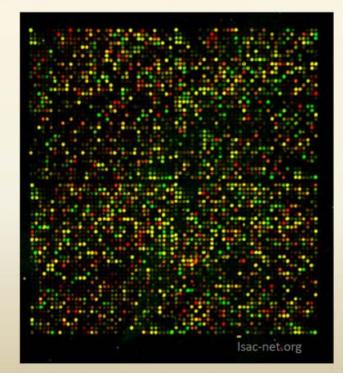
- qRT-PCR requires knowledge of gene sequence
- Hard manual work
- Low throughput
- Expression level relative to control (house-keeping gene)



Obtaining the transcriptome (not many years ago)

Microarray - expression determination

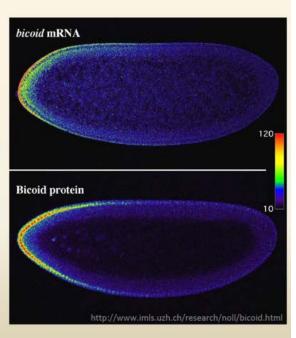
- Requires gene sequences for probe design
- High throughput compared to qRT-PCR
- Possibility of outsourcing
- Expression results relative to all probes



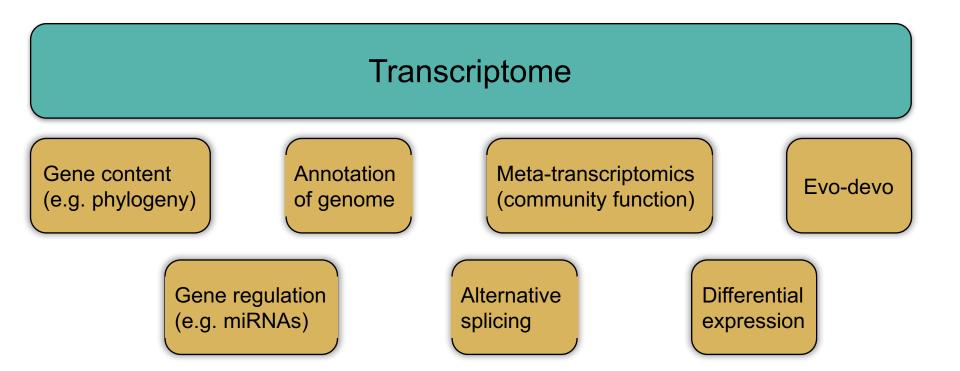
A word of caution...

We tend to think...

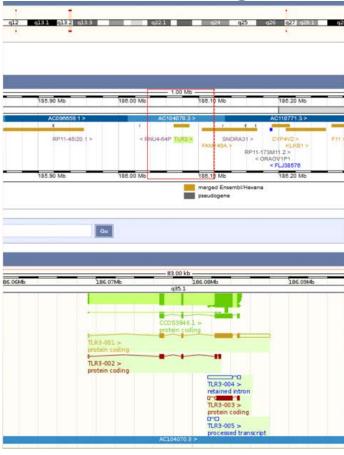
- Transcriptome = mRNA
- mRNA = Protein
- Protein = Biological relevance
- Things are seldom as simple as clear cut...



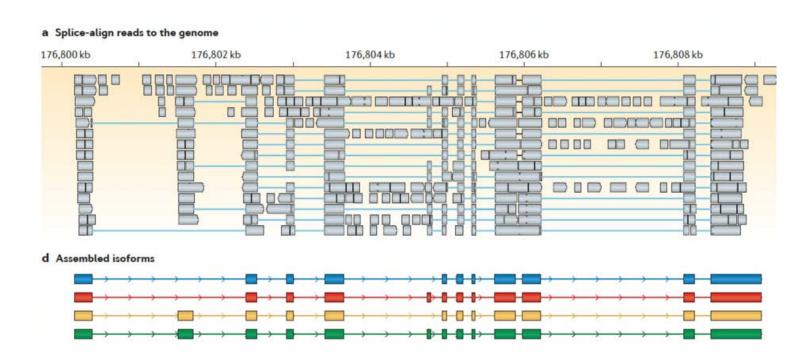
Uses of RNA-seq



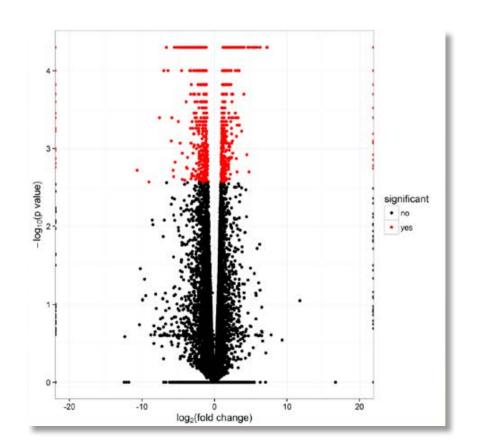
Genome annotation – better gene prediction



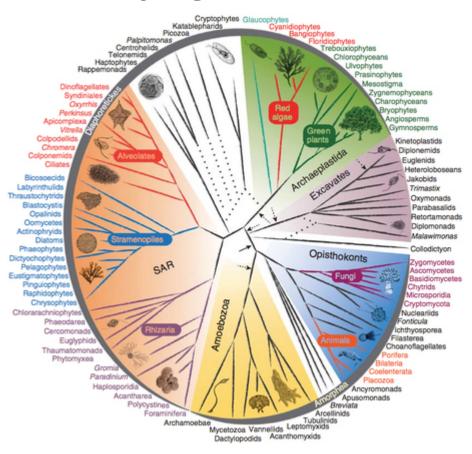
Isoforms – alternative splicing



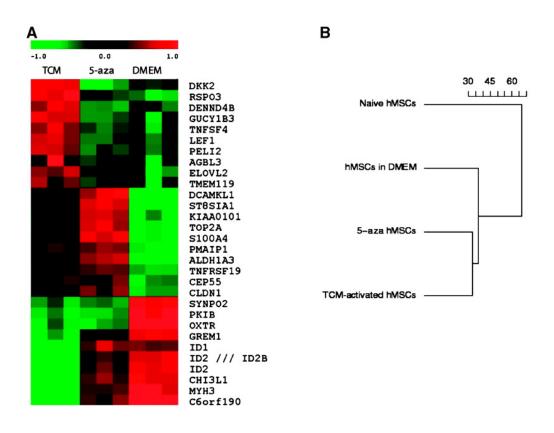
Differential gene expression - functional studies

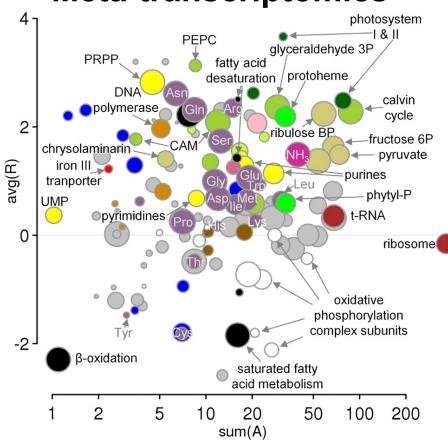


Phylogenomics



Comparative gene expression (between tissues or between species – or both)

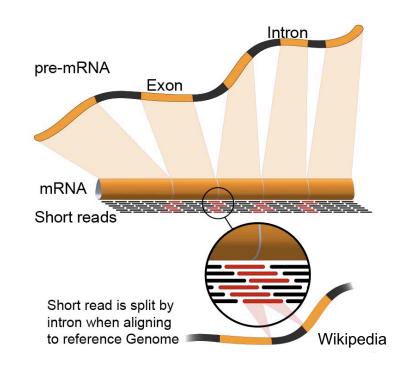




"Next generation" transcriptomics

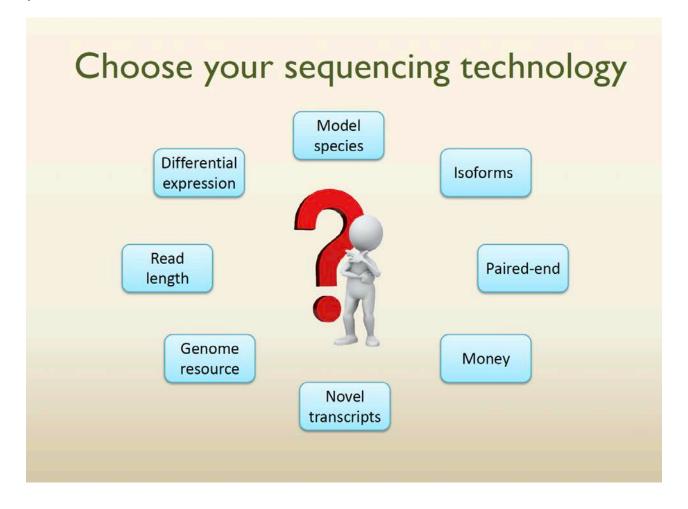
 Transcriptome and expression in one go

- No need for prior gene/genome sequence information
- High throughput
- Can be outsourced
- Can be costly

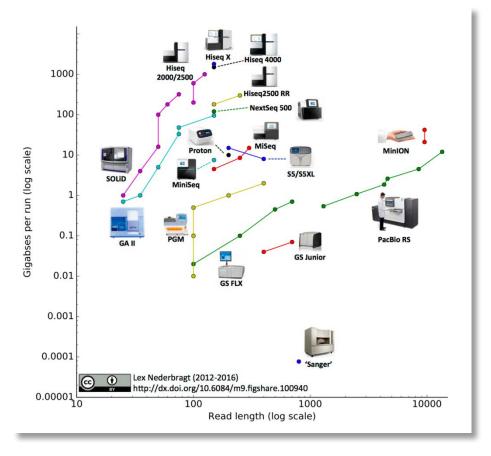


UiO • Department of Biosciences

University of Oslo



Next generation sequencing (NGS/HTS)



Illumina

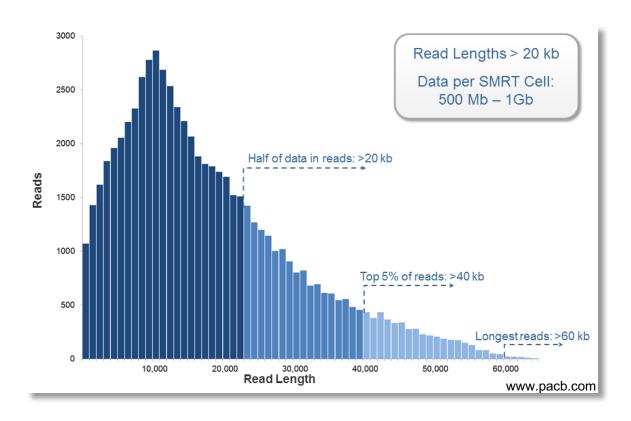
- Short read paired-end technology
- 2 flowcells 8 lanes each
- ~150 bp PE reads
- Reasonable reconstruction of isoforms
- Reasonable detection of novel transcripts
- Expression analysis
- Makes decent reference transcriptomes

PacBio - single-molecule sequencing

- Long read sequencing technology
- 16 SMRT Cells
- Sequences entire RNAs up to 10 kb
- Reconstruction of isoforms
- Detection of novel transcripts
- Expression analysis
- Great for reference transcriptomes

PacBio sequencing well

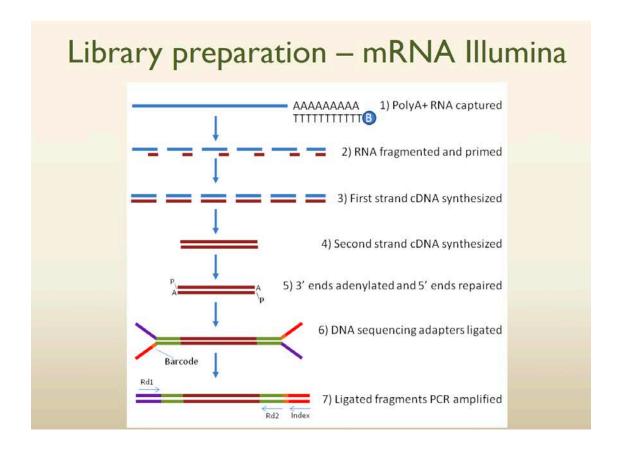
PacBio - single-molecule sequencing



Briefly about sample preparation

- Depending on focus you may perform:
 - rRNA depletion
 - mRNA selection
 - Abundant transcript removal
 - smallRNA conservation
 - Skip library amplification
 - Strand specific library preparation

Briefly about sample preparation



Illumina paired-end sequencing

- You get two reads from the same RNA fragment
- Can be long gap in between
- Easier to assemble.
 Detect novel splice variants.

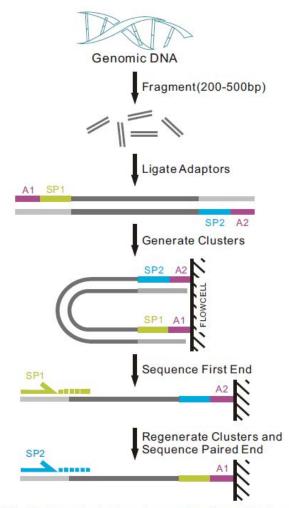
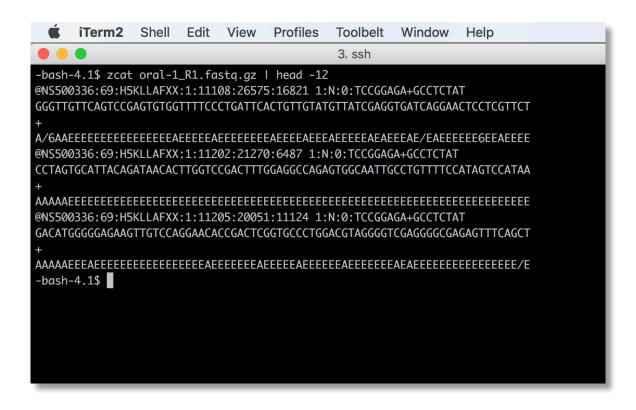
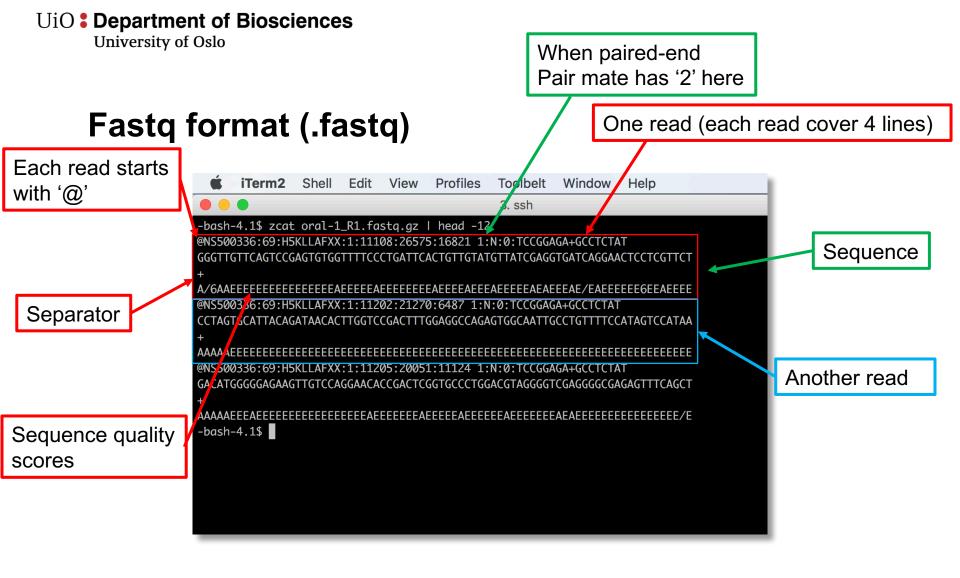


Figure 1-2-1 Pipeline of paired-end sequencing (www.illumina.com)

Fastq format (.fastq)

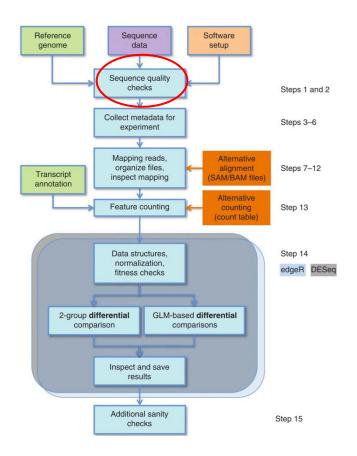




A general RNA-seq pipeline

UiO • Department of Biosciences

University of Oslo



PROTOCOL

Count-based differential expression analysis of RNA sequencing data using R and Bioconductor

Simon Anders¹, Davis J McCarthy^{2,3}, Yunshun Chen^{4,5}, Michal Okoniewski⁶, Gordon K Smyth^{4,7}, Wolfgang Huber¹ & Mark D Robinson^{8,9}

¹Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. ²Department of Statistics, University of Oxford, Oxford, UK. ³Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ⁴Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia. ⁵Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia. ⁶Functional Genomics Center UNI ETH, Zurich, Switzerland. ⁷Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia. ⁸Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. ⁸SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland. Correspondence should be addressed to M.D.R. (mark.robinson@imls.uzh.ch) or W.H. (whuber@embl.de).

Published online 22 August 2013; doi:10.1038/nprot.2013.099

RNA sequencing (RNA-seq) has been rapidly adopted for the profiling of transcriptomes in many areas of biology, including studies into gene regulation, development and disease. Of particular interest is the discovery of differentially expressed genes across different conditions (e.g., tissues, perturbations) while optionally adjusting for other systematic factors that affect the data-collection process. There are a number of subtle yet crucial aspects of these analyses, such as read counting, appropriate treatment of biological variability, quality control checks and appropriate setup of statistical modeling. Several variations have been presented in the literature, and there is a need for guidance on current best practices. This protocol presents a state-of-the-art computational and statistical RNA-seq differential expression analysis workflow largely based on the free open-source R language and Bioconductor software and, in particular, on two widely used tools, DESeq and edgeR. Hands-on time for typical small experiments (e.g., 4–10 samples) can be <1 h, with computation time <1 d using a standard desktop PC.

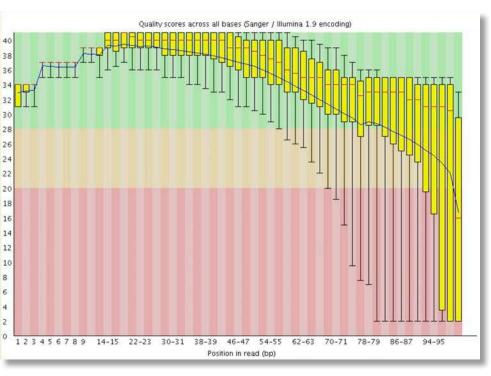
Sequence quality

Raw read trimming

- Adapter trim: based on sequence similarity
 - adapter/sequencing primer removal
- Hard trim: set number of bases
 - Certain primers (tags)
 - Known bias
- Soft trim: set quality threshold
 - Quality trimming

Sequence quality

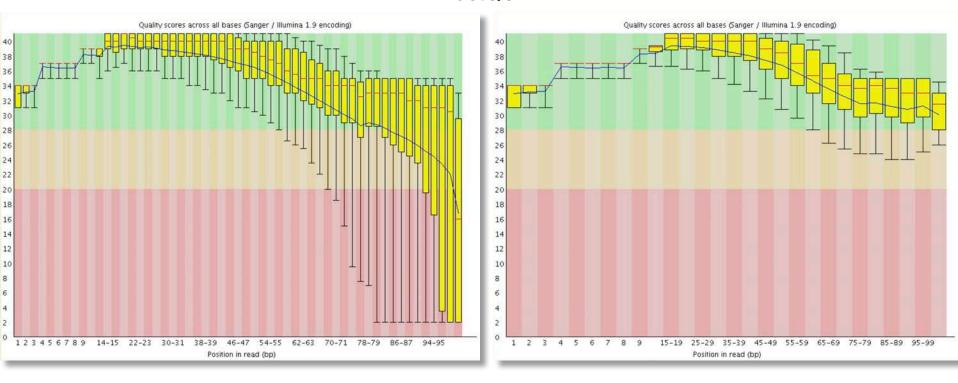
FastQC



Phred Quality Score 30 = 99.9% accuray (20 = 99%)

Sequence quality

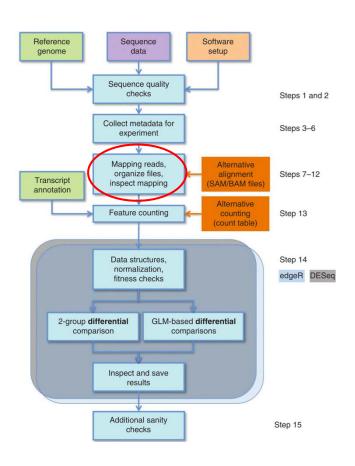
FastQC



Phred Quality Score 30 = 99.9% accuray (20 = 99%)

Exercise 1 – Quality assessment

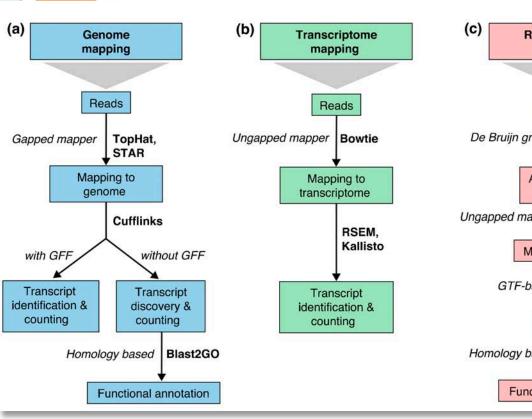
Mapping / de novo assembly

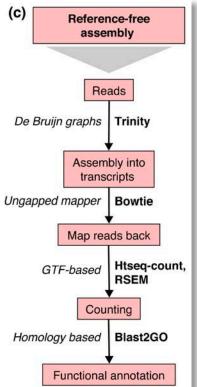


UiO Department of Biosciences

University of Oslo

Mapping / de novo assembly





Reference genome

TopHat2 – part of the "Tuxedo pipeline"

Bowtie
Extremely fast, general purpose short read aligner

TopHat
Aligns RNA-Seq reads to the genome using Bowtie
Discovers splice sites

PROTOCOL

Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks

Cole Trapnell^{1,2}, Adam Roberts³, Loyal Goff^{1,2,4}, Geo Pertea^{5,6}, Daehwan Kim^{5,7}, David R Kelley^{1,2}, Harold Pimentel¹, Steven L Salzberg^{5,6}, John L Rinn^{1,2} & Lior Pachter^{1,8,6}

"Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. "Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA." Department of Computer Science, University of California, Berkelye, California, USA. Computer Science and Artificial Intelligence Iah, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. "Department of Medicine, Mexical Cambridge, Massachusetts, USA." Department of Medicine, Cambridge, Massachusetts, USA. "Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA. "Center for Bioinformatics and Computational Biology, University of Maryland, CUSA." Department of Mathematics, University of California, Berkeley, California, USA. "Department of Molecular and Cell Biology, University of California, Berkeley, California, USA." Correspondence bloud be addressed to C.T. (cole@broadinstitute.org).

Published online 1 March 2012; corrected after print 7 August 2014; doi:10.1038/nprot.2012.016

HISAT – replaces TopHat2?

PROTOCOL

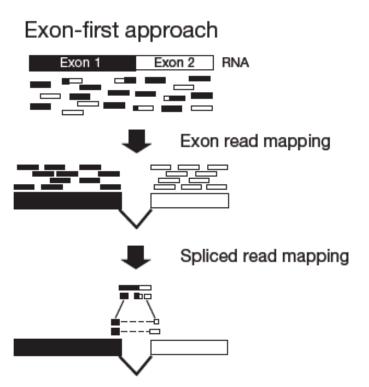
Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown

Mihaela Pertea1,2, Daehwan Kim1, Geo M Pertea1, Jeffrey T Leek3 & Steven L Salzberg1-4

¹Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Polnns Hopkins School of Medicine, Baltimore, Maryland, USA. ²Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA. ³Department of Biostatistics, Bioomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. ⁵Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA. Correspondence should be addressed to S.L.S. (salzberg@jhu.edu).

Published online 11 August 2016; doi:10.1038/nprot.2016.095

TopHat2

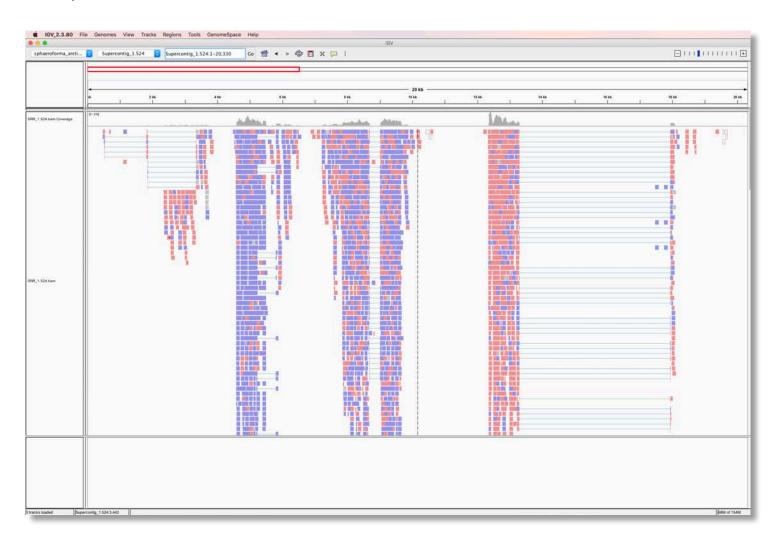


1. aligns reads to the transcriptome using bowtie

- 2. Unmapped reads are mapped to the genome (discovery of novel transcripts)
- 3. Remaining reads are split up and mapped to find splice junctions

UiO • Department of Biosciences

University of Oslo



Exercise 2 – Mapping