Working with files

* Reading — get info into your program
» Parsing — processing file contents
» Writing — get info out of your program

S| ﬂ{i
| F:f
File Reading and Writing B |
MBV-INFx410 1slis]
Fall 2016 Jr ,“
"
2
. [P H— l;
Reading and writing wE:
« Three-step process - j%
- Open file 1]
« create file handle — reference to file T 4‘,
- Read or write to file _' i
- Close file § |

* File will be automatically closed on
program end, but bad form to not close

-"w" - write file
-"a" - append to end of file

=

Opening a file
+ How to open a file: N
fh = open("filename", "mode") 5 j[_
» fh = filehandle, reference to a file, 'j 4‘,

NOT the file itself T
+ Opening modes: =
-"r" - read file L ‘

16/11/2016

Reading a file

* Three ways to read

read([n]), n = bytes to read, default is all
readline(), read one line, incl. newline

readlines(), read file into a list, one element
per line, including newline

Parsing

» Getting information out of a file

* Commonly used string methods

oneline: variable that contains text

oneline.split("character") — splits line into list
on character, default is whitespace

oneline.replace("in string", "put into instead")
slicing

Reading example

>>> fh = open("reading_file.txt", "r")
>>> fh
<open file 'reading_file.txt', mode 'r" at 0x1027e4540>

>>> |ines = fh.readlines()
>>> lines

['This is a test file.\n', 'This file contains \n', 'three lines of text.\n']
>>>

NOTE: results is a list with strings, each
string ending in a newline —a \n

Parsing example

protein_name at_content

prot1 0.4
prot2 0.5
prot3 0.2
prot4 0.8

Goal: calculate the average AT content of the proteins

16/11/2016

Parsing example — take 1

>>> fh = open("at_cont_pars_ex.txt", "r")

>>> lines = fh.readlines()

Open the file, read in
>>> fh.close() P

the text, close it

>>> print lines
['protein_nameltat_content\n', 'prot1\t\t0.4\n", 'prot2\t\t0.5\n",

'prot3\t\t0.2\n', 'prot4\t\t0.8\n']
>>> for line in lines:
print line

Iterate through each
of the lines in the file

protein_name at_content

prot1 0.4
prot2 0.5
prot3 0.2
prot4 0.8
>>>

Parsing example — take 3

Skipping the first line (i.e. skipping the first element of the list):

>>> print lines
['protein_nameltat_content\n', 'prot1\t\t0.4\n’, 'prot2\t\t0.5\n’,

'prot3\t\t0.2\n’, 'prot4\t\t0.8\n']
>>> for line in lines[1:]:

Cut out the first line in
the file — no at content

print line.replace("\n", "") present in that line
prot1 04
prot2 0.5
prot3 0.2
prot4 0.8

>>>

Parsing example — take 2

Removing the newline, so we only get the line itself.

>>> print lines
['protein_nameltat_content\n', 'prot1\t\t0.4\n’, 'prot2\t\t0.5\n’,
'prot3\t\t0.2\n', 'prot4\t\t0.8\n"] Replace the newline
>>> for line in lines: with nothing

print line.replace("\n", "")

protein_name at_content

prot1 0.4
prot2 0.5
prot3 0.2
prot4 0.8
>>>

Parsing example — take 4

Getting at only the AT content value

>>> print lines
['protein_nameltat_content\n', 'prot1\t\t0.4\n’, 'prot2\t\t0.5\n’,
'prot3\t\t0.2\n', 'prot4\t\t0.8\n']
>>> for line in lines[1:]:
text = line.replace("\n", "")
fields = text.split()

Split each line on newline,
print out all fields, then
only the second field

print fields
print fields[1]

['prot1','0.4"]
0.4
['prot2','0.5']
0.5
['prot3','0.2"]
0.2
['prot4’;'0.8']
0.8

>>>

4 "L;;

16/11/2016

Parsing example — take 5

Putting the AT content value into a list

>>> print lines
['protein_nameltat_content\n', 'prot1\t\t0.4\n’, 'prot2\t\t0.5\n’,

'prot3\tt0.2\n", "prot4\tit0.8\n’] Create list to hold the at contents.
>>> at_content_list =[]

Created outside of loop, otherwise out =

>>> for line in lines[1:]: of scope
text = line.replace("\n", ") | ==t
fields = text.split() iy

Get only at content value,

this_at_content = fields[1] Vit the oot
append it to the lis

at_content_list.append(this_at_content)

i}

i

>>> print at_content_list

[Print out the resulting list I

[0.4','0.5','0.2','0.8"]
>>>

(|

Parsing example — take 6

Calculating the average

>>> print lines
['protein_nameltat_content\n', 'prot1\t\t0.4\n’, 'prot2\t\t0.5\n’,

'prot3\t\t0.2\n’, 'prot4\t\t0.8\n']
>>> at_content_list =[]

>>> for line in lines[1:]:

text = line.replace("\n", "")
fields = text.split()
this_at_content = float(fields[1])

at_content_list.append(this_at_content)

>>> print at_content_list | Calculating the average |
[0.4,0.5,0.2,0.8]
>>> sum(at_content_list)/len(at_content_list)

0.47500000000000003

>>>

Parsing example — take 6

Putting the AT content value into a list as NUMBERS

>>> print lines

['protein_nameltat_content\n', 'prot1\t\t0.4\n’, 'prot2\t\t0.5\n’,
'prot3\t\t0.2\n', 'prot4\t\t0.8\n"]

>>> at_content_list =[]

=

1=
|

>>> for line in lines[1:]:
text = line.replace("\n", "")

fields = text.split() the at content in to float

Converting the string with | i

this_at_content = float(fields[1])
at_content_list.append(this_at_content)

>>> print at_content_list
[0.4,05,0.2,0.8]

>>>

Parsi |

arsing blast output i

Isotig13419 contig698252 99.79 472 1 0 1538 2009 1187 716 0.0 928 —
Isotig13419 contig698252 100.00 14 0 0 1369 1482 1356 1243 1e-56 226 —]
Isotig13419 contig698252 100.00 100 0 0 1247 1346 2243 2144 2e-48 198
Isotig13419 contig698252 98.95 95 1 0 2088 2182 637 543 5e-43 180
isotig13419 contig889828 99.72 361 1 0 570 930 16311271 0.0 708
isotig13419 contig889828 99.60 251 0 1 321 570 2064 1814 2e-119 434
Isotig13419 contig889828 100.00 193 0 0 981 1173266 74 2e-82 31 -+
isotig13419 contig889828 100.00 63 0 0 1185 124763 1 3e-26 125 =
Isotig13419 contig362216 99.72 361 1 0 570 930 364 4 0.0 708 41—
Isotig13419 contig362216 99.60 251 0 1 321 570 797 547 2e-119 434 -
Isotig13419 contig362215 100.00 193 0 0 981 1173266 74 2e-82 3N

* Columns tab separated
* Headings:

- Query, Subject, % id, aln length,
mismatches, # gap openings, q.start,
g.end, s.start, s.end, e-value, bit score

16/11/2016

Length of blast matches

+ Goal: figure out how long each of the matches in
the subject is

+ Output: subject name, length of match
» First: read in file into a list
» Second: Per element in list:

* access columns 2 (subject name), columns 9 and 10
(s.start,

« convert9 and 10 to int, substract and print results
* Remember - python is zero based!

» Fill out script in parse_blast.py

How to get absolute length?

* Results from previous slide — some
lengths were negative

» Examine input file and figure out why

Parsing blast file

import sys
fh = open(sys.argv[1], "r")

lines = fh.readlines() python script

fh.close()
for line in lines: blastout2.txt
text = line.replace("\n","") as input

run with file named B-

fields = text.split()
name = fields[1]

start = int(fields[8])
stop = int(fields[9])
print name, stop - start

contig698252 -471

contig698252 -113

contig698252 -99

[skipping some lines of output here]

the script — some
output in the middle
is skipped

Results from running [

(|

contig539930 90
contig127790 78
contig710791 33

Absolute lengths

Some matches are on the reverse strand,
i.e. stop < start

Solution: reverse that

But: only in cases where the match is
actually on the reverse strand

How to detect: see if stop < start

16/11/2016

 Similar procedure as for read

Writing to files :

mm || XS

- Open file, mode is "w" or "a"

- fo.write(string)

» Note: one single string

» Newlines have to be added specifically
- fo.close()

>>> outstring = "Write this to file\n"

>>> fo = open("outputfile.txt", "w") ||

>>> fo.write(outstring) e
>>> fo.close() b1
>>>

[karinlag@freebee] % cat outputfile.txt
Write this to file -
[karinlag@freebee] %

i
Print absolute lengths, also for | ||
reverse strand matches K
» Modify code from earlier so that in cases Tht |
where stop < start, we print start — stop =
instead il
If statement that lets us print out
start — stop if stop < starts, and -
stop — start otherwise »
Aty
I 5 4 1 i
Modify script to print to file §-
+ Changes to do: Thot
- Open output file B
- Write to output file e
- Close output file =

16/11/2016

Print to file i

UL

Open output file for writing.

Putting the difference in a separate
variable makes it easier to print

Creating output string, and writing
it. Notice we added a newline!

Closing the output file

16/11/2016

Results

J

readFasta.py

Goal: get fasta sequence into one string

Create script that
- opens fasta file - name on command line
- reads in lines into variable lines
- closes fasta file
- create variable to contain fasta sequence
- keepl/cut out first line - out in variable header
- perremaining line:
* remove newline
» add to variable that contains sequence
- print out header and result

J

readWriteFasta.py

» Copy readFasta.py into readWriteFasta.py

» Change script so that you:
- open/create output file
- write header to file
- write dna, in chunks of 60 to file

JAN

readWriteFasta.py

JAN

16/11/2016

