
16/11/2016

1

File Reading and Writing

MBV-INFx410

Fall 2016

Working with files

• Reading – get info into your program

• Parsing – processing file contents

• Writing – get info out of your program

Reading and writing

• Three-step process

- Open file

• create file handle – reference to file

- Read or write to file

- Close file

• File will be automatically closed on
program end, but bad form to not close

Opening a file

• How to open a file:

fh = open("filename", "mode")

• fh = filehandle, reference to a file,
NOT the file itself

• Opening modes:

-"r" - read file

-"w" - write file

-"a" - append to end of file

16/11/2016

2

Reading a file

• Three ways to read

- read([n]), n = bytes to read, default is all

- readline(), read one line, incl. newline

- readlines(), read file into a list, one element
per line, including newline

Reading example

>>> fh = open("reading_file.txt", "r")
>>> fh
<open file 'reading_file.txt', mode 'r' at 0x1027e4540>

>>> lines = fh.readlines()
>>> lines
['This is a test file.\n', 'This file contains \n', 'three lines of text.\n']
>>>

NOTE: results is a list with strings, each
string ending in a newline – a \n

Parsing

• Getting information out of a file

• Commonly used string methods

- oneline: variable that contains text

- oneline.split("character") – splits line into list
on character, default is whitespace

- oneline.replace("in string", "put into instead")

- slicing

Parsing example

protein_name at_content
prot1 0.4
prot2 0.5
prot3 0.2
prot4 0.8

Goal: calculate the average AT content of the proteins

16/11/2016

3

Parsing example – take 1

>>> fh = open("at_cont_pars_ex.txt", "r")
>>> lines = fh.readlines()
>>> fh.close()
>>> print lines
['protein_name\tat_content\n', 'prot1\t\t0.4\n', 'prot2\t\t0.5\n',
'prot3\t\t0.2\n', 'prot4\t\t0.8\n']
>>> for line in lines:
... print line
...
protein_name at_content

prot1 0.4

prot2 0.5

prot3 0.2

prot4 0.8

>>>

Open the file, read in
the text, close it

Iterate through each
of the lines in the file

Parsing example – take 2

>>> print lines
['protein_name\tat_content\n', 'prot1\t\t0.4\n', 'prot2\t\t0.5\n',
'prot3\t\t0.2\n', 'prot4\t\t0.8\n']
>>> for line in lines:
... print line.replace("\n", "")
...
protein_name at_content
prot1 0.4
prot2 0.5
prot3 0.2
prot4 0.8
>>>

Removing the newline, so we only get the line itself.

Replace the newline
with nothing

Parsing example – take 3

>>> print lines
['protein_name\tat_content\n', 'prot1\t\t0.4\n', 'prot2\t\t0.5\n',
'prot3\t\t0.2\n', 'prot4\t\t0.8\n']
>>> for line in lines[1:]:
... print line.replace("\n", "")
...
prot1 0.4
prot2 0.5
prot3 0.2
prot4 0.8
>>>

Skipping the first line (i.e. skipping the first element of the list):

Cut out the first line in
the file – no at content
present in that line

Parsing example – take 4

>>> print lines
['protein_name\tat_content\n', 'prot1\t\t0.4\n', 'prot2\t\t0.5\n',
'prot3\t\t0.2\n', 'prot4\t\t0.8\n']
>>> for line in lines[1:]:
... text = line.replace("\n", "")
... fields = text.split()
... print fields
... print fields[1]
...
['prot1', '0.4']
0.4
['prot2', '0.5']
0.5
['prot3', '0.2']
0.2
['prot4', '0.8']
0.8
>>>

Getting at only the AT content value

Split each line on newline,
print out all fields, then
only the second field

16/11/2016

4

Parsing example – take 5

>>> print lines
['protein_name\tat_content\n', 'prot1\t\t0.4\n', 'prot2\t\t0.5\n',
'prot3\t\t0.2\n', 'prot4\t\t0.8\n']
>>> at_content_list = []
>>> for line in lines[1:]:
... text = line.replace("\n", "")
... fields = text.split()
... this_at_content = fields[1]
... at_content_list.append(this_at_content)
...
>>> print at_content_list
['0.4', '0.5', '0.2', '0.8']
>>>

Putting the AT content value into a list

Create list to hold the at contents.
Created outside of loop, otherwise out
of scope

Get only at content value,
append it to the list

Print out the resulting list

Parsing example – take 6

>>> print lines
['protein_name\tat_content\n', 'prot1\t\t0.4\n', 'prot2\t\t0.5\n',
'prot3\t\t0.2\n', 'prot4\t\t0.8\n']
>>> at_content_list = []
>>> for line in lines[1:]:
... text = line.replace("\n", "")
... fields = text.split()
... this_at_content = float(fields[1])
... at_content_list.append(this_at_content)
...
>>> print at_content_list
[0.4, 0.5, 0.2, 0.8]
>>>

Putting the AT content value into a list as NUMBERS

Converting the string with
the at content in to float

Parsing example – take 6

>>> print lines
['protein_name\tat_content\n', 'prot1\t\t0.4\n', 'prot2\t\t0.5\n',
'prot3\t\t0.2\n', 'prot4\t\t0.8\n']
>>> at_content_list = []
>>> for line in lines[1:]:
... text = line.replace("\n", "")
... fields = text.split()
... this_at_content = float(fields[1])
... at_content_list.append(this_at_content)
...
>>> print at_content_list
[0.4, 0.5, 0.2, 0.8]
>>> sum(at_content_list)/len(at_content_list)
0.47500000000000003
>>>

Calculating the average

Calculating the average

Parsing blast output

• Columns tab separated

• Headings:

- Query, Subject, % id, aln length,
mismatches, # gap openings, q.start,
q.end, s.start, s.end, e-value, bit score

Isotig13419 contig698252 99.79 472 1 0 1538 2009 1187 716 0.0 928
Isotig13419 contig698252 100.00 114 0 0 1369 1482 1356 1243 1e-56 226
Isotig13419 contig698252 100.00 100 0 0 1247 1346 2243 2144 2e-48 198
Isotig13419 contig698252 98.95 95 1 0 2088 2182 637 543 5e-43 180
isotig13419 contig889828 99.72 361 1 0 570 930 1631 1271 0.0 708
isotig13419 contig889828 99.60 251 0 1 321 570 2064 1814 2e-119 434
Isotig13419 contig889828 100.00 193 0 0 981 1173 266 74 2e-82 311
isotig13419 contig889828 100.00 63 0 0 1185 1247 63 1 3e-26 125
Isotig13419 contig362216 99.72 361 1 0 570 930 364 4 0.0 708
Isotig13419 contig362216 99.60 251 0 1 321 570 797 547 2e-119 434
Isotig13419 contig362215 100.00 193 0 0 981 1173 266 74 2e-82 311

16/11/2016

5

Length of blast matches

• Goal: figure out how long each of the matches in
the subject is

• Output: subject name, length of match

• First: read in file into a list

• Second: Per element in list:

• access columns 2 (subject name), columns 9 and 10
(s.start,

• convert 9 and 10 to int, substract and print results

• Remember - python is zero based!

• Fill out script in parse_blast.py

Parsing blast file
import sys
fh = open(sys.argv[1], "r")
lines = fh.readlines()
fh.close()

for line in lines:
text = line.replace("\n","")
fields = text.split()
name = fields[1]
start = int(fields[8])
stop = int(fields[9])
print name, stop - start

python script

run with file named
blastout2.txt
as input

contig698252 -471
contig698252 -113
contig698252 -99
[skipping some lines of output here]
contig539930 90
contig127790 78
contig710791 33

Results from running
the script – some
output in the middle
is skipped

How to get absolute length?

• Results from previous slide – some
lengths were negative

• Examine input file and figure out why

Absolute lengths

• Some matches are on the reverse strand,
i.e. stop < start

• Solution: reverse that

• But: only in cases where the match is
actually on the reverse strand

• How to detect: see if stop < start

16/11/2016

6

Print absolute lengths, also for
reverse strand matches

• Modify code from earlier so that in cases
where stop < start, we print start – stop
instead
import sys
fh = open(sys.argv[1], "r")
lines = fh.readlines()
fh.close()

for line in lines:
text = line.replace("\n","")
fields = text.split()
name = fields[1]
start = int(fields[8])
stop = int(fields[9])
if stop < start:

print name, start - stop
else:

print name, stop - start

If statement that lets us print out
start – stop if stop < starts, and
stop – start otherwise

Writing to files

• Similar procedure as for read

- Open file, mode is "w" or "a"

- fo.write(string)
• Note: one single string

• Newlines have to be added specifically

- fo.close()

>>> outstring = "Write this to file\n"
>>> fo = open("outputfile.txt", "w")
>>> fo.write(outstring)
>>> fo.close()
>>>
[karinlag@freebee] % cat outputfile.txt
Write this to file
[karinlag@freebee] %

Modify script to print to file

• Changes to do:

- Open output file

- Write to output file

- Close output file

Print to file
import sys
fh = open(sys.argv[1], "r")
lines = fh.readlines()
fh.close()

fo = open(sys.argv[2], "w")

for line in lines:
text = line.replace("\n","")
fields = text.split()
name = fields[1]
start = int(fields[8])
stop = int(fields[9])
difference = 0
if stop < start:

difference = start - stop
else:

difference = stop – start

outstring = name + "\t" + str(difference) + "\n"
fo.write(outstring)

fo.close()

Open output file for writing.

Putting the difference in a separate
variable makes it easier to print

Creating output string, and writing
it. Notice we added a newline!

Closing the output file

16/11/2016

7

Results
contig698252 471
contig698252 113
contig698252 99
contig698252 94
contig889828 360
contig889828 250
contig889828 192
contig889828 62
contig362216 360
contig362216 250
contig362215 192
contig362215 62
contig855826 139
contig701635 138
contig747126 141
contig280145 115
contig560635 99
contig279861 85
contig539930 90
contig127790 78
contig710791 33

readFasta.py

• Goal: get fasta sequence into one string

• Create script that

- opens fasta file - name on command line

- reads in lines into variable lines

- closes fasta file

- create variable to contain fasta sequence

- keep/cut out first line - out in variable header

- per remaining line:

• remove newline

• add to variable that contains sequence

- print out header and result

import to get command line variables available
import sys

Read in fasta file contents
fh = ____(sys.argv[_], "r")
lines = fh._________()
fh.close()

Store the first line, the description line
firstline = _____[0]
Replace the newline at the end with nothing
header = _________.replace(__, __)

Create an empty text variable to store the sequence in
sequence = __

Iterate over all the read in lines, from the second and onwards
___ line in _____[_:]:

Remove the newline
wo_newline = line._______("\n", "")
append this line of text to the sequence we have already
________ = sequence _ wo_newline

print header
print sequence

import to get command line variables available
import sys

Read in fasta file contents
fh = open(sys.argv[1], "r")
lines = fh.readlines()
fh.close()

Store the first line, the description line
firstline = lines[0]
Replace the newline at the end with nothing
header = firstline.replace("\n", "")

Create an empty text variable to store the sequence in
sequence = ""

Iterate over all the read in lines, from the second and onwards
for line in lines[1:]:

Remove the newline
wo_newline = line.replace("\n", "")
append this line of text to the sequence we have already
sequence = sequence + wo_newline

print header
print sequence

16/11/2016

8

readWriteFasta.py

• Copy readFasta.py into readWriteFasta.py

• Change script so that you:

- open/create output file

- write header to file

- write dna, in chunks of 60 to file

readWriteFasta.py
rest of script is above
Iterate over all the read in lines, from the second and onwards
for line in lines[1:]:

Remove the newline
wo_newline = line.replace("\n", "")
append this line of text to the sequence we have already
sequence = sequence + wo_newline

Open out file
fo = open(sys.argv[2], "w")
Write header
fo.write(header + "\n")

Get slices 60 long, and write out with newline on end
i = 0
while i < len(sequence):

chunk = sequence[i:i+60]
fo.write(chunk + "\n")
i = i + 60

fo.close()

