Applied Bioinformatics Exercise – Learning to know a new protein and working with sequences

In this Exercise we will explore some databases and tools that can be used to get more insight about a new protein coding gene and the corresponding protein.

1. Open your internet browser and go to the website <u>http://www.genenames.org</u>. Here you find the database of the HUGO Gene Nomenclature Committee (HGNC) approved gene names. Search for OGG1 and go to the OGG1 page. What is the approved symbol and name for this gene and what is the chromosomal location?

Approved symbol: OGG1 Approved name: 8-oxoguanine DNA glycosylase Location: 3p26

2. There are many links to other databases from the OGG1 page. Follow the "UniProt" link under "Protein resources". What is the UniProtKB identifier for human OGG1? Is it in the Swiss-Prot or TrEMBL part of UniProtKB? (Check under "Status" close to the top of the page) What does that tell you about the quality of this entry? Can you find any information about the function of this protein? Under the "Sequences" heading you will find the sequence of OGG1 (Isoform 1A, the "canonical" sequence). How many residues/amino acids are there in this variant of OGG1? How many other isoforms are there?

The identifier is O15527 and this is an entry in UniProtKB/Swiss-Prot. This means that a human curator/expert actually has checked this entry. Function: "DNA repair enzyme that incises DNA at 8-oxoG residues. Excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (FAPY) from damaged DNA. Has a beta-lyase activity that nicks DNA 3' to the lesion." There are 345 residues in the UniProtKB "canonical" sequence. There are 7 additional isoforms.

3. Go back to the genenames.org webpage for OGG1 and follow the "GenBank" link under the "Nucleotide sequences" category. What are the accession identifier and GI number for this GenBank entry? What is the identifier/accession for the corresponding protein? What is the length of this protein (click on the "/protein_id" link to find out)?

Accession: U96710 GI: 2078293 Protein Accession: AAB81132 Length of protein is 351 residues

4. Go back to the genenames.org webpage for OGG1 and follow the "RefSeq" link under the "Nucleotide sequences" category. What are the accession identifier and GI number for this RefSeq entry? What is the identifier/accession for the corresponding RefSeq protein? What is the length of this protein (follow the "/protein_id" link 2/3 down the page)? Is this the same length you found when following the GenBank link? Is it the same as the UniProtKB "canonical" sequence? Do you have any idea why?

Accession: NM_016821 GI number: 197276617

Protein Accession: NP_058214 Length of protein is 424 residues The lengths are not the same, most likely because they represent three different, predicted splice variants

5. Go back to the genenames.org webpage for OGG1 and follow the "Ensembl" link under the "Gene resources" category. Use the first link. What is the identifier for the human OGG1 gene? How many transcripts have Ensembl listed for OGG1? How many of these are protein coding? Do any of the Ensembl proteins have the same length as any of the three splice variants investigated above? If so, what are the transcript IDs for these?

Human OGG1 gene Ensembl identifier is ENSG00000114026 It is 18 transcripts, but only 14 (or 12) are predicted to encode a protein Protein with transcript ID ENST00000302036 has 424 residues None of the 14 has 351 Protein with transcript ID ENST00000344629 has 345 residues

6. Go back to the genenames.org webpage for OGG1 and follow the "Entrez Gene" link under the "Gene resources" category. What is the identifier (ID) for the human OGG1 gene in this database? How many transcripts are there listed for OGG1 here? In the "Related information" link on the right, click on "RefSeq Proteins". How many proteins do you find here? Do any of the RefSeq proteins have the same lengths as the splice variants investigated above (except Ensembl)? If so, what are the protein accession identifiers for these? Click on the links to these proteins to find the accessions for the corresponding transcripts. What are they?

The identifier is 4968 There are 10 transcripts and 10 RefSeq proteins None are 351 residues NP_058214 has 424 residues, and the transcript is NM_016821 NP_002533 has 345 residues, and the transcript is NM_002542

7. Based on all the information above, what do you believe are the main functional isoforms of human OGG1 *in vivo*?

In brief, it is one big mess with 8 proteins in UniProtKB, 10 in RefSeq, and 14 proteins in Ensembl. None of these are the 351 residues protein which is the translation of the GenBank entry we were pointed to. UniProt/Swiss-Prot has a "canonical" sequence, but we find 7 other isoforms even in manually curated Swiss-Prot. It is far from obvious which variants are most important, if any. In this case, as often, the solution is *to read the literature!*

According to Klungland et al. "OGG1: From structural analysis to the knockout mouse", in Oxidative Damage to Nucleic Acids (Landes Bioscience, Springer, 2007):

70	Oxidative Damage to Nucleic Acids
	5

The cloning of the human OGG1 gene also uncovered the existence of two splice variants, α -hOGG1 and β -hOGG1 with an open reading frame (ORF) coding for peptides of 345 and 424 amino acids, respectively.^{12,27} The β -OGG1 gene structure appears to be absent in rodents. Later studies have identified several alternatively spliced forms of human OGG1 mRNAs, with the two variants previously mentioned being predominant.³⁰ These two alternative spliced forms are localized to the nucleus (α -OGG1) and mitochondria (β -OGG1).³⁰

The 345 and 424 residues variants are α -OGG1 and β -OGG1, respectively, the nuclear and mitochondrial targeted isoforms. Quite possibly, many of the other splice variants we found above (in RefSeq, UniProt, and GenBank) represent "transcriptional junk". In addition, many of the additional Ensembl variants are only computationally predicted with some bioinformatics algorithm. These variants most likely exist only on the computer and not in human cells at all!

This is important:

- 1. Some protein sequences in databases correspond to proteins that actually are present and have an important biological function in the organism these are of course those that we are interested in studying
- 2. Some protein sequences in databases are translations of mRNAs that in reality never are properly translated in the organism they do not represent biologically useful information
- 3. Many protein sequences in databases are translations of mRNAs that have been computationally predicted from the genome sequence. In many (most?) cases, not the mRNA and certainly not the protein, exists in the organism
- 8. Go to the Ensembl page for the OGG1 gene again:

http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000114026

Note the names for α -OGG1 and β -OGG1. Halfway down the page you find a graphical illustration of the two isoforms under "Genes (Comprehensive Gene Annotations from GENCODE 23)". What are the differences between the two isoforms (in terms of splicing)?

	 	_	_	 _
OGG1-001 >				
protein coding				
┇╋╲╋╌╼╾╌╴╋╌╌╌╴╋┝╢╝				
OGG1-002 >				
protein coding				

OGG1-001 is β -OGG1 while OGG1-002 is α -OGG1. The six 5' exons appear to be the same, but the 7th exon is different in the two variants.

9. At the top of the page, click on the ENST00000344629 transcript (*i.e.* α-OGG1 or the 345 residues variant). At the left hand side click on "Protein" under "Sequence" to see the protein sequence. It is displayed with alternating black and blue colouring, corresponding to sequence encoded by exon 1, 2, 3 and so on. Residues spanning an intron are show in red. Take a screen shot of the window with the displayed sequence and paste it into PowerPoint, Word or some other suitable program. Crop the picture to show only the protein sequence and the explaining text.

After cropping, the screenshot looks like this (actually slightly different in 2015):

Prote	Protein sequence 🚯											
Key												
Exons	Alternating exons	Alternating exons	Residue overlap splice site									
MPARAL DQVWTL QEVAQK FPSLQA CILPGV NFFRSL	LPRRMGHRTLASTPALWASIPC TQTEEQLHCTVVRGDKSQASRP FOGVRLLRQDPIECLFSFICSS LAGPEVEAHLRKLGLGYRARYV STKVADCICLMALDKF0AVPVD WGPYAGWAQAVLFSADLRQSRH	RSELRLDLVLPSGQSFRWREQSF PDELEAVRKYFQLDVTLAQLYHH NNTIARITGMVERLCQAFGPRLIQ SASARAILEEQGGLAWLQQLRESS THMMHIAQRDYSWHPTTSQAKGPS QEPPAKRRKGSKGPEG	AHWSGVLA WGSVDSHF LDDVTYHG YEEAHKAL PQTNKELG									

10. Do the same for β -OGG1. What are the five last residues of the OGG1 protein that are identical in the two isoforms?

Prote	ein seque	ence 🛛			
Кеу					
Exons	Alternating	exons	Alternating exc	ons	Residue overlap splice site
MPARAL	LPRRMGHRTL	ASTPALWASIP	CPRSELRLDLVLPSG	QSFRWREQSPA	AHWSGVLA
DQVWTL	TQTEEQLHCT	VYRGDKSQASR	PTPDELEAVRKYFQL	DVTLAQLYHHW	IGSVDSHF
QEVAQK	FOGVRLLROD	PIECLFSFICS	SNNNIARITGMVERL	COAFGPRLIQI	DDVTYHG
FPSLQA	LAGPEVEAHL	RKLGLGYRARY	VSASARAILEEQGGL	AWLQQLRESSY	(EEAHKAL
CILPGV	GTKVADCICL	MALDKPQAVPV	DVHMWHIAQRDYSWH	PTTSQAKGPSE	PQTNKELG
NFFRSL	WGPYAGWAQA	GLLGNAFDGHQ	LLRPLIFCQDHLREG	PPIGRGDSQGE	ELEPQLP
SSLSSI	PYGFCDHCWT	KDVDDPPLVTH	PSPGSRDGHMTQAWP	VKVVSPLATVI	IGHVMQAS
LLAL					

Everything is identical until the sequence GWAQA, *i.e.* until the last intron. The 3' exon is different in the two variants.

11. In order to see the exonic sequences click on "Exons" at the left hand side under "Sequence". Again take a screenshot and crop to get a nice picture. Which two nucleotides are at the start of all introns? And at the ends? What is the start codon of OGG1 and what is the stop codon? What are the lengths of the 5' and 3' introns in β -OGG1?

Sł	now All 💌 entries						Show/hide columns Filter	
No.	Exon / Intron	Start	End	Start Phase	End Phase	Length	Sequence	
	5' upstream sequence						cctcctcctcggattggctacctctaggtgaaatgagcggtggttgagcc	
1	ENSE00002259329	9,791,628	9,792,107	-	2	480	CTACTTOCGGTGGTGCTGTGGTCTGCCCCTGGAGAACCCAGAAGAACACAGCTGTGCGCG CCCAACAGOCTCTGGGGGCGGAGAAGATAAGTGCCAAGGAGGGGCGGGACCTACACCTC AGGAAAGCCGGAGATTGGGGCCGAACGGGGCTTGTTAGTGACCCCCACGAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCGACCTTGTGGGCGGCGGCGCTGGT TGCAGAGGGGCTGGGGCTACTAACGGAGGCTGCTTGGGAAATGCCTGCC	
	Intron 1-2	9,792,108	9,792,628			521	gtgagtgactgagcctgagaagcctgggttgtcatgtgccttgggctcag	
2	ENSE00001669842	9,792,629	9,792,876	2	1	248	GTGGAGGGACAAAGTCCTGCACACTGGAGTGGTGTGTGTACTACGGGATCAAGTATGGACACT GACTCAGACTGAGGAGCAGCTCCACTGCACTG	
	Intron 2-3	9,792,877	9,793,453			577	gtgagtacaggacctgggctggggttaccccctgcatttctggtctccag	
3	ENSE00001644854	9,793,454	9,793,633	1	1	180	GTGTGCGACTGCTGCGACGAGAGCCCATCGAATGCCTTTTCTTTTATCTGTTCCTCCA ACAACAACATCGCCCGCATCACTGGCATGGTGGGGGGGGG	
	Intron 3-4	9,793,634	9,796,387			2,754	gtgagtaggtgggtcccctgcccccttgccctcctcctcactccccgcag	
4	ENSE00001165146	9,796,388	9,796,569	1	0	182	GGCCAGAGGTGGAGGCTCATCTCAGGAAGCTGGGCCTGGGCTATCGTGCCCGTTACGTGA GTGCCAGTGCCCGAGCATCCTGGAAGAACAGGGGGGGCTAGCCTGGCTGCAGCAGCTAC GAGAGTCCTCATATGAGGAGGCCCCACAAGGCCCTCTGCATCCTGCCTG	
	Intron 4-5	9,796,570	9,798,154			1,585	gtgaggccccagggggtaggagctgagggctcattctgtgtctgtcaaag	
5	ENSE00002823518	9,798,155	9,798,305	0	1	151	GTGGCTGACTGCATCTGCCTGATGGCCCTAGACAAGCCCCAGGCTGTGCCCGTGGATGTC CATATGTGGCACATTGCCCAAGGTGACTACAGCGGCCCCTACCAGGTCCCAGGCGAAG GGACCGAGCCCCCAGGCCAACAAGGAACTGG	
	Intron 5-6	9,798,306	9,798,450			145	gtgaggaaagtgggctgcaggggctcttagtctcatcacttctgatttag	
6	ENSE00001764469	9,798,451	9,798,500	1	0	50	GAAACTTTTTCCGGAGCCTGTGGGGACCTTATGCTGGCTG	
	Intron 6-7	9,798,501	9,807,492			8,992	gtgagtgtacctaggtgtcctccctccatgctgccttccttgccctccag	
7	ENSE00002896204	9,807,493	9,808,421	0	-	929	GROCTOCTTGSCRATGCATTGATGROCACCASCTTCTGOGTCCTTATGTTCTGCCAG GATCACCTOCGAGAAGGCOCCCCTATGGAGAGGGGATTGCAAGAGTGAAGAACTGGAA CCCCASCTTCOCTCAGCCTTGCCCTATGCCTATGCGTCGTGGACCACTGCTGGACC AAGGACGTGGATGACCCTCOCCTAGTCACTCATCCCTUGSCTCCAGAGATGGTAG CACCASSCCTGGACGCAGTCAGTAGGTCCTCCTGGCCACGTAATGGCCATGTG ATGCCASSCCTGGCGACCATTGGACATGAGCTCCTGGGGAGAGCGTGTGGGAGGATGAA GCCTGGGACGTATGCGACCATTGGAGATGAGCTCCTGGGGAGAGCGTGTGGGAGGATGA ATTAACACAMAGGAAGTCCAACCTGAGGATTGGCCAAATAATTTCCTGATTAACATTATG TGGCCCTCTGGATCACGGCGACCATTGGAGGTCAGCCGTGGGATGGACGTTGGATGAACTTGG GCGGGTCATGCCTTTTGCTCAATTGGAGGCTGGCGGGGAGGACGTTTGGACTAGCCTTTGGATGACCTGGCTGG	

All introns start with GT and end with AG. This is very common. According to a large study (<u>http://nar.oxfordjournals.org/content/34/14/3955.full.pdf</u>) >98% of all introns are of the GT-AG type. Less than 1% is GC-AG type, and these often have less efficient splicing. This may lead to alternative splicing (See below). Start and stop codons are ATG and TGA, respectively. The 5' intron has 521 nucleotides, while the 3' intron has 8992 nucleotides.

Pagani and Baralle (Nat. Rev. Genet. 5, 389 (2004)) explain splicing as follows,

Exon 1 Exon 2 Exon 3

12. Check the "Exons" link for the other main transcript. What are the lengths of the 5' and 3' introns in α -OGG1?

The 5' intron has 521 nucleotides, obviously. It is exactly the same intron as in β -OGG1. The 3' intron has 244 nucleotides.

13. Staying on the α -OGG1 "Exons" page, click on the "Configure this page" button on the left. Change "Flanking sequence at either..." to 1000 and tick "Show full intronic sequence". Then click on the little "tick mark" in the upper right-hand corner to save the changes. Again take a screenshot and crop to get a nice picture of the first exons and introns.

	Click for help (oper	ns in new w	indow)				Show/hide columns	Filter	
١o.	Exon / Intron	Start	End	Start Phase	End Phase	Length	Sequence		
	5' upstream sequence						2000 - 20		
	ENSE00002259329	9,791,628	9,792,107		2	480	CINCTICCGGTGGTGCTC CCCACAGGCTCTGGGGG AGGAAGCCGGGGGAATT TGCACGGGTGGAGGAAT MGCCTIAAGGTGGAGGAA TCTGGCTAGGCGGGGCT TCTGGCTAGGCGGGGGCT TCTGCCAGGCGCGCGCTCTG	ENGICT GEOCT GRASALCOLARALSALCALACT GTGOLG GOGAANAST MATTICEL MARKOGGOCCOLORUT LLACTO GOGAANAST MATTICEL MARKOGGOCCOLORUT LLACTO THE STANDARD STANDARD STANDARD STANDARD THE STANDARD STAND STANDARD STANDARD STAN	
	Intron 1-2	9,792,108	9,792,628			521	gtgagtgactgagcctga cotggoatggggtacaaa gaacoagcoggtagtag ggatocagogggataaoo gggtotggtogtogtgg gggoagoctocogag tattitttgtagagggg tgtattagtttggtag aggaaattggtgcag	<pre>wpagercgtcoctogetcoggtcoctgocgtcaaaatg gaattgoggattgotagaagaaaga cmactgoggattagaagaagaaga cmactgotagatgaagaaga gagtogaagaagaaga aggtoggaatgoagaaga aggtoggatgoagatgotagaga gagtoggattagagatgoggatgaaga ggtoggattagatgoggatgoggatgaaga ggtoggattagatgagatg</pre>	
	ENSE00001669842	9,792,629	9,792,876	2	1	248	GIGGAGGAGCAAAGICC GACTCAGACIGAGGAGCE CAGGCCCACACCAGACGE GGCICAACIGTATCACCE ATICCAAG	TIGCACACIGGAGIGGIGIACCIAGCOGAICAAGIAIGGACACI AGTICOACIGCACIGITACCGAGGAAGCAAGAGCAAGGCAAG AGTIGGAGGCGIGCGCAAGIACTICOACGIAGAIGIACAC AGTIGGAGGCICCGIGGACICCCACIICCAAGAGGIGGCICAGAA	
	Intron 2:3	9,792,877	9,793,453			577	gtgagtacaggacotgg cagttttgcacotgta aggactastactattas attattattacotgta ttggacogggatacaco catggggotocttast ggatgagaggttsggt toctggagtttggt toctggagtttggt	propopy tapy that act and can be control to the stages of the second sec	
	ENSE00001644854	9,793,454	9,793,633	1	1	180	GTGTGCGACTGCTGCGAC		

14. Make sure that the "OGG1-002"-line in the table is selected, *i.e.* it is light blue (as seen below) and click on "Variation table" under "Genetic variation" on the left.

C.Ensembl 🟎	T/BLAT Bio	Mart Tools Dov	mloads Help 8	Documentation E	log Mirrors		🛃 • Search H	luman	Login - Register Q
Human (GC °h37) V Location: 3:9	791,628-9,82	9,903 Gene: OGG	Transcript:	OGG1-002					
Transci displays	Transcr	ipt: OGG1-00	2 ENST00003	14629					
E Sequen	Description		8-oxogu	anine DNA glycosyla:	e [Source:HGN0	C Symbol;Acc:8125]			
- Exons (Location		Chromo	iome 3: 9.791.628-9.	799.197 forward	strand.			
Protein	Gene 🗉		This tran	script is a product of	gene ENSG0000	00114026 - This gene has 17	transcripts		
B: External References		_							
Oligo probes (25)	SC V	entries		Show	/hide columns		Filter		
C/C Itology	<i>~</i> .	Transcript ID 🕴	Length (bp) 🕴	Protein ID	Length (aa)	Biotype 0	CDS incomplete 0	CCDS 0	
Ontology graph (19)	>	ENST00000302036	2220	ENSP00000306561	424	Protein coding	1.1	CCDS2576	
petic Variation		ENST00000344629	1744	ENSP00000342851	345	Protein coding		CCDS2581	
variation table	OGG1-003	ENST00000302003	1655	ENSP00000305584	410	Protein coding		CCDS2580	
- Variation image	OGG1-004	ENST00000352937	1392	ENSP00000344899	263	Protein coding	5'	-	
- Population comparison	OGG1-005	ENST00000383826	1069	ENSP00000373337	195	Protein coding		CCDS2578	
Protein Information	OGG1-006	ENST00000302008	2191	ENSP00000305527	356	Protein coding		CCDS2579	
- Protein summary	OGG1-007	ENST00000339511	1815	ENSP00000345520	324	Protein coding		CCDS43046	
- Domains & features (7)	OGG1-008	ENST00000449570	1948	ENSP00000403598	322	Protein coding		CCDS46742	
Variations (79)	OGG1-010	ENST00000416333	396	ENSP00000402713	132	Protein coding	5' and 3'	-	
B External data	OGG1-013	ENST00000441094	860	ENSP00000390337	222	Protein coding	5'	-	
E ID History	OGG1-016	ENST00000426518	874	ENSP00000399810	128	Protein coding	5'	-	
- Transcript history	OGG1-201	ENST00000349503	1950	ENSP00000303132	357	Protein coding	-	CCDS2577	
- Protein history	OGG1-012	ENST00000425665	930	ENSP00000396034	52	Nonsense mediated decay			
A Configure this page	OGG1-014	ENST00000429146	747	ENSP00000393726	168	Nonsense mediated decay	5'	-	
Considere ans bage	OGG1-009	ENST0000383825	472	No protein product		Processed transcript		-	
💦 Manage your data	OGG1-011	ENST00000436092	814	No protein product		Processed transcript			
als Executidate	OGG1-015	ENST00000432857	554	No protein product		Retained intron			

You get a table with many SNPs and other variants found in human individuals/populations. Use the "Consequence Type" filter and show only "Missense variants". There are many columns. Try to find these columns: the ID for the SNP, position in chromosome, the two alleles, the allele frequency if it is known, the type of variation, the source database, the amino acid change (AA) and position of this residue in the protein (AA cord). The two columns at the right shows the output from two bioinformatics algorithms, SIFT and PolyPhen, that try to estimate if the amino acid change will affect the function of the protein.

Variation table @														
Variant table	fariant table													
This table shows known variants for this gene. Use the 'Consequence Type' filter to view a subset of these.														
					Show/hide colur	nns				Search	· · · ·			
Filter × Conseque	ence Type: Missense	variant 👻												
Variant ID	Chr: bp	Alleles	Global MAF	Class	Source	Evidence	Clin. Sig.	Туре	AA	AA coord	SIFT	PolyPhen		
<u>rs1052133</u>	3:9757089	C/G	0.302 (G)	SNP	dbSNP	● © ● ¥K [] ④	-	Missense variant	S/C	326	0.18	0.23		
rs1805373	3:9754824	G/A	0.028 (A)	SNP	dbSNP	🛔 💕 🕲 🗰 💭 🕑	•	Missense variant	R/Q	229	0.09	0.168		
rs113561019	3:9756791	G/A/T	0.002 (A)	SNP	dbSNP	🔮 🕷 🕒	-	Missense variant	G/E	308	0	1		
rs113561019	3:9756791	G/A/T	0.002 (A)	SNP	dbSNP	ar (1)	-	Missense variant	G/V	308	0	1		
<u>rs104893751</u>	3:9750423	G/A	0.001 (A)	SNP	dbSNP	🌒 ik 🕘 🛸	A	Missense variant Splice region variant	R/Q	46	0	0.999		
rs201580660	3:9751042	C/G/T	0.001 (G)	SNP	dbSNP	🐣 (int	-	Missense	R/G	79	0.21	0.018		

Are there any missense variants in human α -OGG1 that have a relatively high frequency? Which residue does it affect and what is this residue mutated to? What do SIFT and PolyPhen think about this mutation?

The SNP rs1052133 has a minor allele frequency of 30.2%. This is a Ser326 to Cys mutation, often written as Ser326Cys or S326C. No other SNPs have a frequency of more than 2.8%. For S326C SIFT predicts "tolerated" and PolyPhen predicts "benign". According to these predictors, S326C will most likely not change the function of α -OGG1 significantly.

15. Click on the rs1052133 link to go to the Ensembl page for this SNP/variation. Then click on the "Population genetics" link at the left. In the 1000 Genomes project data (Phase 3), which population has the highest ratio of G | G genotype (which means homozygote for Cys326)? Which population has the lowest? In each case, what are the G | G genotype ratios?

The highest is in the CDX population, Chinese Dai in Xishuangbanna, China. 42% have a G|G genotype. The lowest is in the TSI population (Toscana, Italy) with 1.0%. Also YRI (Yoruba, Nigaria), and other African and European populations are low (less than 2.5%).

16. Can you find anything in the scientific literature about this mutation? Are their any studies on the effect of the OGG1 Cys/Cys genotype? Look for example here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0035970

According to several studies, individuals with the OGG1 Cys/Cys variant are more prone to get lung cancer.

17. Back in Ensembl, lick on the "Gene:OGG1" tab at the top of the page to go back to the information about the gene. Click on the "Orthologues" link at the left. What are orthologous genes? Is there an OGG1 ortholog in the ferret? Click on the ferret OGG1 gene identifier link (marked ENSMPUG00000017122). Click on the "Transcript ID" and then on "Protein" under "Sequence" at the left.

"Homologous sequences are orthologous if they were separated by a speciation event: when a species diverges into two separate species, the copies of a single gene in the two resulting species are said to be orthologous." Yes, there is an OGG1 gene in the ferret genome.

Now go to the Jalview website (http://www.jalview.org) and "Launch Jalview Desktop" in the upper right-hand corner. Do "File" - "Input Alignment" - "from Textbox". Copy the protein

sequence from Ensembl and paste it into the textbox window with the header "ferret". Use FASTA format, as you see below. If you do not know what that is, read about it here:

http://en.wikipedia.org/wiki/FASTA_format

)	
Cut & Paste Alignm	ent File			
JEETEE LLAASIMLGABEHERTLA NQVMILTOJEEDJYCH QFVARHEQVIKILOODE FFSLALAGEHEVENU GNFFFSLWOPYAGHAQA	SPRALMASIPCPRSELELDIVLI VRONGWARPTPELLATYOV PLOTSFICISMILATION RILGUYARYYSTSARAILEE NALMERGAYYVYMWROLOGOD VLFSADLROPHRAREPRAKRRH	SQQSTRWEQNFAMTOVLA VQLVVLAQLYHNHSSVDEF UQLVVLAQLYHNHSSVDEF OGGLFWLQDLKARPYEZTHKA SMFTTSQANGPSPQANKEL JTDFFV		
	New Wind	low Close		

18. Go back to the human OGG1 "Orthologues" page. Do exactly as you did for the ferret OGG1 for the following species: cow, mouse (longest sequence), rat, squirrel, and human (α -OGG1). That is, go to the gene, find the protein sequence, copy the sequence and paste it into the Jalview textbox under the ferret sequence (See below). When you believe you know how to do this and you have had enough practising, you can copy the remaining sequences from below.

Cut & Paste Alignment File	- 0 🔀
File Edit	
>ferret	
LLARSIMLCSMEHRTLASFPALWASIPCPRSELRLDLVLASGOSFRWREONPAHWTGVLA	
NOVWILIQIEEQLYCIVYRGDKGWVGRPIPEELKIVYQYFOLDVSLAOLYHHWSSVDPHF	
QEVAQKFQGVRLLQQDPIECLFSFICSSNNNIARITGMVERLCEAFGPRLIQLDDVTYHG	
FPSLQALAEGPEVEVQLRTLGLGYRARYVSTSARAILEEQGGLPWLQQLRKAPYEETHKA	
LCTLPGVGTKVADCICLMALDKPOAVPVDVHMWQIAQRDYSWHPTTSOAKGPSPOANKEL	
GNFFRSLWGPYAGWAQAVLFSADLRQPHRAREPPAKRRRSTDPEV	
>cow	
MEMSVVSLLRGSMGHRTLASFPALWASIPCPRSELRLDLVLASGQSFRWREQSPAHWSGV	
LADQVWTLTQTEEHLYCTVYRGDKGRVGRPTLEELKAVQQYFQLDVSLAPLYHHWSSVDP	
HFQEVAQKFKGVRLLQLDPIECLFSFICSSNNNIARITGMVERLCQTFGPRLIQLDDVTY	=
HGFPSLQALAGPEVEAQLRNLGLGYRARFVSASARAILEERGGLPWLQQLRKAPYEEAHK	
ALCTLPGVGTKVADCICLMALDKPQAVPVDVHVWQIAQRDYSWHPTTSQAKGPSPQANKE	
LGNFFRNLWGPYAGWAQAVLFSADLRQLQQAQEPPAKRRKRCTGPEG	
>mouse	
MLFRSWLPSSMRHRTLSSSPALWASIPCPRSELRLDLVLASGQSFRWKEQSPAHWSGVLA	
DQVWTLTQTEDQLYCTVYRGDDSQVSRPTLEELETLHKYFQLDVSLAQLYSHWASVDSHF	
ORVAQKFQGVRLLRQDPTECLFSFICSSNNNIARITGMVERLCQAFGPRLIQLDDVTYHG	
FPNLHALAGPEAETHLRKLGLGYRARYVRASAKAILEEQGGPAWLQQLRVAPYEEAHKAL	
CILPGVGAKVADCICLMALDRPOAVPVDVHVWQIAHRDIGWHPKISUAKGPSPLANKELG	
NFIRNLWGFIAGWAQAVLFJADLKQFJLJKEFFARKKRGJKKFEG	
YEAU MI ESSGI SSSMDHDTI TSSDAI WAST DCDDSEI DI DI UT A SCOSEDWDEOSDAHWSCUT A	
NEFSSELSSERIETEISSFREMESIFCFRSELKEDEVERSOZFRMREQSFRMSSVER	
OSVAOKFOGVELLEODETECLESETCSSNNNTABITGMVERLCOAFGERLVOLDDVTVHG	
FPNLHALAGPFVFTHLRKLGLGXBARYVCASAKATLFFOGGPAWLOOLRVASYFFAHKAL	
CTLPGVGTKVADCICIMALDKPOAVPVDIHVWOTAHRDYGWOPKTSOTKGPSPLANKELG	
NFFRNLWGPYAGWAOAVLFSADLROONLSREPPAKRKKGSKKTEG	
>squirrel	
MVARSLLGIMKHRTLSSSPALWASIPCPRSELRLDLVLTSGQSFRWKEQSPAHWSGVLAD	-

>ferret

LLARSLMLCSMEHRTLASFPALWASIPCPRSELRLDLVLASGQSFRWREQNPAHWTGVLA NQVWTLTQTEEQLYCTVYRGDKGWVGRPTPEELKTVYQYFQLDVSLAQLYHHWSSVDPHF QEVAQKFQGVRLLQQDPIECLFSFICSSNNNIARITGMVERLCEAFGPRLIQLDDVTYHG FPSLQALAEGFEVEVQLRTLGLGYRARYVSTSARAILEEQGGLPWLQQLRKAPYEETHKA LCTLPGVGTKVADCICLMALDKPQAVPVDVHMWQIAQRDYSWHPTTSQAKGPSPQANKEL GNFFRSLWGPYAGWAQAVLFSADLRQPHRAREPPAKRRRSTDPEV >cow

 $\label{eq:memory_memory_memory} MEMSVVSLLRGSMGHRTLASFPALWASIPCPRSELRLDLVLASGQSFRWREQSPAHWSGV LADQVWTLTQTEEHLYCTVYRGDKGRVGRPTLEELKAVQQYFQLDVSLAPLYHHWSSVDP$

Dr. Jon K. Laerdahl (jonkl@medisin.uio.no)
HFQEVAQKFKGVRLLQLDDIECLFSFICSSNNNIARITGMVERLCQTFGPRLIQLDDVTY HGFPSLQALAGPEVEAQLRNLGLGYRARFVSASARAILEERGGLPWLQQLRKAPYEEAHK ALCTLPGVGTKVADCICLMALDKPQAVPVDVHVWQIAQRDYSWHPTTSQAKGPSPQANKE
LGNFFRNLWGPYAGWAQAVLFSADLRQLQQAQEPPAKRRKRCTGPEG
>mouse
MLFRSWLPSSMRHRTLSSSPALWASIPCPRSELRLDLVLASGQSFRWKEQSPAHWSGVLA
NTTRNLWGFIAGWAQAVLFSADLKQFSLSKEFFAKKKKGSKKFEG
DOVWTLTOTEDOLYCTVYRGDKGOVGRPTLEELETLHKYFOLDVSLTOLYSHWASVDSHF
OSVAOKFOGVRLLRODPTECLFSFICSSNNNIARITGMVERLCOAFGPRLVOLDDVTYHG
FPNLHALAGPEVETHLRKLGLGXRARYVCASAKAILEEOGGPAWLOOLRVASYEEAHKAL
CTLPGVGTKVADCICLMALDKPOAVPVDIHVWOIAHRDYGWOPKTSOTKGPSPLANKELG
NFFRNLWGPYAGWAQAVLFSADLRQQNLSREPPAKRKKGSKKTEG
>squirrel
MVARSLLGIMKHRTLSSSPALWASIPCPRSELRLDLVLTSGQSFRWKEQSPAHWSGVLAD
QVWTLTQTEELLYCTVYRGDKGWVGKPTPEELETVHKYFQLDVSLAQLYSHWSSVDSHFQ
$\tt KMAQKFQGVRLLRLDPIECLFSFICSSNNNITRITGMVERLCQAFGPRLIQLDDVTYHGF$
PTLQALAGSEVEACLRKLGLGYRAQYVSASARAILEEQGGLAWLQQLREAPYEEAHKALC
TLPGVGTKVADCICLMALEKPQAVPVDVHVWQIAQRDYSWHPTTSQAKGPSPQANKELGN
FFRRLWGPYAGWAQAVLFSADLHQPHRSQEPPAKRKKRSKGPEV
>human
${\tt MPARALLPRRMGHRTLASTPALWASIPCPRSELRLDLVLPSGQSFRWREQSPAHWSGVLA}$
DQVWTLTQTEEQLHCTVYRGDKSQASRPTPDELEAVRKYFQLDVTLAQLYHHWGSVDSHF
QEVAQKFQGVRLLRQDPIECLFSFICSSNNNIARITGMVERLCQAFGPRLIQLDDVTYHG
FPSLQALAGPEVEAHLRKLGLGYRARYVSASARAILEEQGGLAWLQQLRESSYEEAHKAL
CILPGVGTKVADCICLMALDKPQAVPVDVHMWHIAQRDYSWHPTTSQAKGPSPQTNKELG
NFFRSIWGPYAGWAOAVIFSADI.ROSRHAOEPPAKRRKGSKGPEG

19. In the Jalview textbox window, press "New Window". You get a window with 6 sequences, but they are not optimally aligned. In this window, do "Web service" - "Alignment" - "Muscle with defaults". This will run the Muscle multiple sequence alignment program on a machine somewhere else on the internet (most likely in Dundee, Scotland) and send the result back to your Jalview session. Do all the sequences have a Met residue at the N-terminus? If not, which one is missing it? Why do you think it is missing?

04.11.2015

The N-terminal residue of the ferret sequence is Leu, all the other have Met. It is unlikely that the Leu is the actual start codon of this sequence. More likely, the start codon is Met7 (which in that case is Met1), or possibly Met11. Actually, there are some indications that it is Met11 in the ferret sequence that is the actual start codon. If you get the other available carnivore sequences from Ensembl (the cat sequence is missing the N-terminus), you see (below) that Met11 is conserved in all 3 while no other Met (ATG) codons are near the N-terminus. Also the 3 sequences are nearly 100% conserved downstream of Met11, but not upstream, indicating that this actually might be part of the 5' UTR. If you take a look at the 5' UTRs for these 3 carnivore sequences in Ensembl, you will find that there are no in-frame ATG start codons nearby and upstream in the sequence.

20. Are all the other sequences the same length at the N-terminus? If not, which is longer? Is it certain that it actually should be longer than the others?

MuscleWS alignment	MuscleWS alignment of Cut & Paste input - FASTA										
File Edit Select View Format Colour Calculate Web Service											
	10 20 30 40 50										
ferret/1-345 · · LLA <mark>R</mark>	SLMLCSME <mark>hr</mark> tlasfp/	ALWA <mark>s</mark> ipcp <mark>rs</mark> el	. RLDLVLA <mark>SG</mark> C	SF <mark>RWREQNPAHW</mark> T							
cow/1-347 ME <mark>MS</mark> VV	SLLR <mark>G</mark> SM <mark>GHR</mark> TLA <mark>SF</mark> P/	ALWA <mark>s</mark> i <mark>poprse</mark> l	. <mark>R</mark> ldlvla <mark>sgo</mark>	Q S F <mark>R</mark> W <mark>R E Q S P</mark> A HWS							
mouse/1-345 - MLFR	SWLPSSMRH <mark>R</mark> TLSSSP/	ALWA <mark>s</mark> i <mark>poprs</mark> el	. RLDLVLA <mark>SG</mark> C	SE <mark>RWKEQSPAHWS</mark>							
rat/1-345 MLFS	SSLSS <mark>S</mark> MRH <mark>R</mark> TLTSSP/	ALWA <mark>SIPCPRSE</mark> L	. RLDLVLASGO	SF RWREQSPAHWS							
squimel/1-344 MVAR	SLL - GIMKHRTLSSSP/	ALWA <mark>SIPCPRSE</mark> L	. RLDLVL <mark>TSGO</mark>	SE RWKEQSPAHWS							
human/1-345 MPAR	A L L <mark>P</mark> R R M <mark>G H R T</mark> L A <mark>S T P</mark> /	ALWA <mark>S</mark> IPCP rs el	. R L D L V L P S G C	QSFRWREQSPAHWS							

The cow sequence appears to have an extra 2 N-terminal residues. However, it also has a Met3. The nucleotide sequence is therefore ATGxxxATG. It is difficult from the sequence alone to determine if it is the first or second ATG that is the actual start codon. Quite likely no-one has checked experimentally if bovine protein OGG1 has MEMSVVS or MSVVS at the N-terminus, so we cannot know for sure. It is also possible that both forms exist, and that the function of the protein is identical for the two variants.

21. Show the multiple sequence alignment with Clustalx colouring. In the Jalview multiple sequence alignment window, you can move the mouse over the residues. You will then see the identity of the residue you are pointing to in the lower left corner of the window (See below).

Use this technique to find human α -OGG1 Ser326. Is this residue conserved in other mammals? Is Ser320 conserved?

Ser326, the residue affected by SNP rs1052133 investigated above, is not conserved in the other mammals. Ser320 is 100% conserved in the 6 mammals.

22. Find ferret OGG1 Glu189. Is there anything odd here? Can you find out what?

There is a single residue insertion in ferret OGG1 here, in a quite conserved segment of the protein. We better check it in Ensembl... The protein is found here:

http://www.ensembl.org/Mustela_putorius_furo/Transcript/Sequence_Protein?db=core;g =ENSMPUG00000017122;r=GL896899.1:32715972-32721358;t=ENSMPUT00000017267

Glu189 is encoded partly by exon 3 and exon 4. We click on the cDNA link at the left and locate the relevant part (below).

481 481	CGA <mark>CTC</mark> TGT <mark>GAG</mark> GCC <mark>TTT</mark> GGA <mark>CCT</mark> CGG <mark>CTC</mark> ATC <mark>CAG</mark> CTT <mark>GAT</mark> GAT <mark>GTC</mark> ACCTACCATGGC CGACTCTGTGAGGCCTTTGGACCTC <u>GGCTCAT</u> CCAGCTTGATGATGTCACCTACCATGGC
161	-RLCEAFGDRLIDDVTYHG-
541	TTCCCTAGCCTGCAGGCCCTGGCCTGAAGGGCCAGAGGTAGAGGTGCAGCTCAGGACGCTG
541	TTCCCTAGCCTGCAGGCCCTGGCTGAAGGGCCAGAGGTAGAGGTGCAGCTCAGGACGCTG
181	-FP-SL-QA-LAEGPEVEVQLRTL-
601	GGCCTGGGGTACCGTGCCCGCCATGTGAGTACCAGTCCCCGAGCCATCCTAGAAGAACAG
601	GGCCTGGGGTACCGTGCCCGCTATGTCACTACCAGTGCCCGAGCCATCCTAGAAGAACAG
201	-G-L-G-Y-R-A-R-R-Y-V-S-T-S-A-R-A-I-L-E-E-Q-

We have the codons CTG-GCT-GAA-GGG-CCA, that encodes L-A-E-G-P. However, if we guess that AAG with the yellow background is actually a part of the intron we get the protein sequence L-A-G-P. This splicing is also perfectly ok, since the intron ends with AG. We also get rid of the insertion, the extra Glu residue. If we click on the "Exons" link, we see that introns 1, 2 and 4-6 are normal GT-AG introns. However, intron 3 that we are fiddling with now is GT-AA! Impossible!!! For some unknown and stupid reason, the gene searching algorithm made a GT-AA intron, instead of a perfectly ok GT-AG intron. This created a most likely completely artificial insertion in the protein. Extremely likely, Glu189 does not exist *in vivo*, just in the computer...

23. Let us remove ferret Glu189 in JalView. Select the column containing Glu189 by clicking just above the ferret sequence. You get a red square as seen below. Then click "Edit" - "Delete" to get rid of this quite likely erroneous insertion.

24. In the middle of ferret OGG1 intron 3 (back in the Ensembl "Exons" page), there are a lot of nnnnnnn. Why is that?

This is because the genomic sequence here is unknown. This part of the genome has not yet been sequenced.

25. Go back to UniProt (http://www.uniprot.org) and click on the UniRef link. Search (at the top) in UniRef for human OGG1, *i.e.* O15527. Ideally, O15527 should be in a single UniRef50 cluster, *i.e.* a group of homologs with more than 50% sequence identity. However, the various splice variants are currently (Nov 2015) found in 3 UniRef50 clusters. We will also see below that sequences that are clearly more than 50% identical to human OGG1 is found in none of the 3 clusters. Clustering in UniRef does not appear to function very well... Focus on the UniRef50 cluster with the canonical

O15527 variant. Click on the identifier for this cluster. How many proteins are there in this OGG1 50% cluster?

There are currently 46 proteins, but this might change with the next UniProt update.

26. Select the following sequences (by setting a tick mark at the left): O15527 (human α -OGG1), K7AAZ7 (Chimpanzee), F7B0F5 (Rhesus macaque), F7IC54 (marmoset), and G3RZB6 (gorilla). Choose "Add to basket" and select "Selected cluster members". Open your shopping basket and click "Full View". Choose "Download" – "FASTA (canonical) – Preview and copy the sequences into Jalview (using the input from textbox option). Also find, i UniProt, the sequence H0XK07 from the galago and add it to the text box. Show the alignment by clicking "New window". We do not need to run Muscle. The sequences are already aligned and they all have the same length. Find the human α -OGG1 Ser326 residue. Does it appear to be conserved in primates?

Ser326 is conserved in all great apes, in the New World monkey (marmoset), and Old World monkey (macaque), that is all the "higher primates". It is not conserved in galago, a prosimian, related to lemurs.

This could mean that Ser326 has some function in higher apes, but it could also be that, by chance, no mutation has yet happened at this position.

27. Go back to <u>http://www.uniprot.org/uniprot/O15527</u> again. Can you find any information about S326C on this page?

It says "Common polymorphism in the Japanese population" (with some literature references) and "Corresponds to variant rs1052133".

28. Can you find any Molecular function GO terms for OGG1 on this page? Give the ID for one of them.

Yes, "damaged DNA binding", "endonuclease activity", and "oxidized purine nucleobase lesion DNA N-glycosylase activity" (GO:0008534, had to click on the link to find this).

29. Click on the "oxidized purine nucleobase lesion DNA N-glycosylase activity" GO term link. Click on the "Protein Annotation" tab to see other proteins given this annotation. Are their many proteins here? More than 50?

Yes, there are 8,989 proteins at present, and this number will most likely increase fast.

30. Click on the "Ancestor Chart" to see the ancestor GO terms. Take a screenshot and paste the chart below.

31. Let us go back to the human OGG1 Ensembl entry to get an impression of how much data you can find for OGG1 homologs there (and how messy it is):

http://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000114026

Click on the "Ensembl protein families" under "Comparative Genomics" at the left. Ensembl currently has 97 proteins in this family (Nov 2015). Including other proteins from UniProtKB there is also a cluster of 533 OGG1 homologs. Download the Ensembl OGG1 homologs and open the multiple sequence alignment in Desktop Jalview. **Try this first:** Click on "Jalview" in "97 Ensembl members of this family JalView". Then click on the "Start Jalview" button. You have hopefully opened the JalviewLite applet with less functionality that Desktop Jalview. **If not, see below!** Choose "File" - "Output to text box", choose "FASTA". Then copy all the text in the window and paste it into a textbox in Desktop Jalview. If you are unable to open JalviewLite, **try this instead:** On the "Ensembl protein families" page, click on the "Family ID" link ENSFM0025000003270 to get to the page for this protein family. Click on "Download family alignment", choose FASTA file format, Uncompressed format and "Preview". We only want the 97 Ensembl sequences. Either copy only the 97 first sequences (the ones that has identifiers starting with ENS, but not the UniProtKB sequences such as G3GX91) into Desktop Jalview or download all 533 sequences as a file, open the file in Desktop Jalview and remove all the sequences at the bottom that are not from Ensembl.

You have now opened the multiple sequence alignment of 97 Ensembl OGG1 homologs in Desktop Jalview. Try to tidy up the data by removing sequences that "obviously are wrong", for example sequences that are missing one or more exons, have long segments of missing sequence (that is XXXXXXXX), or have insertions that are found in one species only. "Edit" - "Remove Empty Columns" is useful for tidying up. See my result below...

In order to get a good set of sequences to work with one can, as here, start with a large amount and clean up by removing sequences that are very likely to be incorrect. The other possibility is to start with one or a few sequences and add more sequences that appear fine, one by one, similar to what we did earlier in this exercise. What is obvious, however, is that "all homologs" contains such a mess that is cannot be used for much!

Make sure you are understand everything in this exercise and are able to do all the manipulations. If you are stuck, please ask for help!

