
Proteins that fold in the same way, i.e. ”have the same 
fold” are often homologs.
Structure evolves slower than sequence
Sequence is less conserved than structure 

Protein structure alignments
Jon K. Lærdahl,
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If BLAST gives no homologs (i.e. sequence based)

Instead: Search with protein structure (pdb-file) in structure database (e.g. PDB) 
to find more remote homologs
• For example using DALI
• Much more sensitive than sequence search
• Problems

• Much smaller database (PDB vs. Genbank)
• Need 3D structure of protein

Use structure comparisons to classify, group and cluster proteins. Build protein 
structure families and hierarchies



Protein structure classification
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• Based on taking all structures of PDB
• Remove redundancy (i.e. keep only one copy of “identical” structures)
• Split structures into domains
• Group domains/proteins based on similarity
• Two main classification schemes: SCOP & CATH

Structural Classification 
of Proteins

• Almost 100% 
manually generated
• Proteins grouped 
into hierarchy of 
classes, folds, 
superfamilies and 
families

http://scop.mrc-lmb.cam.ac.uk/scop



SCOP
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• Families
• Sequence identity ~30% or higher
• Very similar structures
• Clearly homologous proteins

• Superfamilies
• Contains families
• May have no or little sequence 
similarity
• Common fold
• Are probably evolutionary related

• Folds
• Contains superfamilies
• Difficult level of classification
• Same major secondary structure 
elements (α-helices and β-sheets) 
with same connections
• Not always homologs

• Classes
• Upper level of classification (4 major, 
3 minor)
• Contains folds
• Based on secondary structure 
composition and “general features”
• e.g. all-α, all-β, ”membrane and cell 
surface” and ”small proteins”
• α/β: One β-sheet with strands 
connected by single α-helices
• α+β: α-helical and β-sheet part 
separated in sequence 

http://scop.mrc-lmb.cam.ac.uk/scop



SCOP
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http://scop.mrc-lmb.cam.ac.uk/scop

all-β class

all-α class,
3 different folds

Globin-like

T4 endonuclease V
4-helical cytokines

TIM-barrel fold
α/β class

Profilin-like fold
α+β class



CATH
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http://www.cathdb.info

Class, Architecture, Topology 
and Homologous

Both manual structural 
alignment and automatic 
alignment with SSAP

5 levels in hierarchy
• Class (as in SCOP)
• Architecture (unique to 
CATH)
• Fold/Topology (as in SCOP 
fold)
• Homologous Superfamily (as 
in SCOP)
• Homologous family (as in 
SCOP)

C.A. Orengo et al. Structure 5, 1093 (1997)

Explore during 
the exercises??



CATH vs. 
SCOP
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• Not always same domains
• Differences in hierarchy (5 vs. 4 
levels)
• Differences in classes (4 vs. 7)
• Fully manual (SCOP) vs. 
manual/automatic (CATH)
• Most of the time (~80% of 
cases) classification is similar
• Both systems has weaknesses 
and strengths
• Use both! 

C.A. Orengo et al. Structure 5, 1093 (1997)

Yellow (α-β class)
Red (α class)
Green (β class)

A-level

T-level

CATH Version 3.2

New topologies/folds are not found often!



SCOP2 & SCOPe
Use this, most likely

http://scop.berkeley.edu



Predictors
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Prediction tools
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• Predictors are available
• on the web (in public web servers)
• as (usually) free or commercial software
• packaged in large (often commercial) software suites

• Predictors have been made for determining all kinds of features from 
sequence

• Secondary structure
• Structural disorder
• Domain boundaries
• Membrane protein or not 
• Number of transmembrane α-helices
• Metal ion binding sites
• Post-translational modifications

• Phosphorylation sites
• Cleavage sites

• And many more
• Subcellular localization

• Nuclear protein?
• Secreted protein?

• Interaction with other proteins, DNA etc. (usually with some 
knowledge of 3D structure)

These tools are 
often extremely 
useful to biologists!

Example here is secondary 
structure prediction but similar or 
related methods/algorithms are 
used in most predictors 



Secondary structure prediction
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Assigning secondary structure is not trivial and there is no single consensus 
method even when 3D structure is known

• Secondary structure 
may be put in manually 
by the authors behind 
a PDB-file
• Algorithms based on 
calculated H-bonds, 
Ramachandran plot, 
etc.

• DSSP
• STRIDE
• DEFINE 

1EBM

β-strand
α-helix

Everything else loop/coil



Secondary structure prediction
Jon K. Lærdahl,
Structural Bioinformatics

Tools/programs that accept a primary sequence and predicts the 
secondary structure state (H/helix, E/sheet, or C/Loop&Coil) for each 
residue



Secondary structure prediction
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Tools/programs that accept a primary sequence and predicts the 
secondary structure state (H/helix, E/sheet, or C/Loop&Coil) for each 
residue

Uses:
• Correct and guide sequence alignments since secondary structure is 
more conserved than primary sequence
• Classify proteins

• If you think your protein is a TIM-barrel, but your prediction 
suggests it has only α-helices, you probably are wrong

• Important step towards predicting 3D structure

Globular and transmembrane proteins have quite different 
properties and should be tackled with different algorithms

Human OGG1       TEEQLHCTVYRGDKSQASRPTPDELEAVRKYFQLDVTLAQLYHHWGSVDSHFQEVAQKFQ
PROF Prediction  CEEEEEEEEECCCCCCCCCCHHHHHHHHHHHCCCCHHHHHHCCCCCCHHHHHHHHHHHCC



Secondary structure prediction
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• Random prediction ~40% accuracy 
• 1st generation prediction (1970’s) ~50%

• Based on relative propensities/intrinsic tendencies of each amino acid to 
be in a state X (= H, E, or C) 
• Ala, Glu & Met often in state H
• Pro & Gly often in state C

• 2nd generation prediction (until mid 1990’s) ~60%
• Proper inclusion of propensities for neighboring residues
• Larger experimental data set

• 3rd generation prediction (until present time) approaching ~80%
• Two main improvements:

• Machine learning/neural networks  
• Combines information from predictions for single sequence with 
information from homologous sequences (multiple sequence alignment)

Since structure is more conserved than sequence homologs (>35% 
identity) are likely to have same secondary structure 



Secondary structure prediction Jon K. Lærdahl,
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• 3rd generation prediction (until present time) approaching ~80%
• Two main improvements:

• Machine learning/neural networks  
• Combines information from predictions for single sequence with 
information from homologous sequences (For example sequences with 
>35% identity in multiple sequence alignment)

Predict 
secondary 
structure for all 
these and fit 
onto alignment

Generate prediction 
based on consensus

Structure is more conserved 
than sequence!
More sequences available 
than structures (PDB vs 
GenBank)!

Sequences
& known secondary structures 
from PDB

Neural network is 
trained on these 
data

Sequences

Trained neural 
network

Predicted secondary structures



Secondary structure prediction -
consensus-based
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• Random prediction ~40% accuracy 
• 1st generation prediction (1970’s) ~50%
• 2nd generation prediction (until mid 1990’s) ~60%
• 3rd generation prediction (until present time) approaching ~80%

Many (more than 70 different published algorithms!) programs for secondary 
structure prediction:
• PHD - BLASTP to find homologs, MSA of homologs, neural networks used for 
prediction, web server
• PSIPRED - PSI-BLAST for homologs, MSA generated, neural network 
prediction, filtering, web server
• PROF - PSI-BLAST, MSA, neural network

Very good idea to use not one tool and trust the results, but instead use 
several unrelated tools and compare/use the consensus

Some web servers do this automatically and generates a consensus based on 
several algorithms (e.g. Jpred & PredictProtein)
• Several programs run and the results are presented to the user as

• one consensus result
• all results and the interpretation is left to the user

• The individual programs may be 
• run locally
• on web servers other places on the internet with the results collected and 
combined on the consensus-server (metaserver) 

metaserver

Prediction result

Job query



Secondary structure prediction -
consensus-based
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Puehringer et al. BMC Biochemistry 9:8 (2008)

C. Cole et al. Nucleic Acids Res. 
36, W197 (2008)



Predictors - common features Jon K. Lærdahl,
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• Use propensities/intrinsic tendencies of single residues or 
short sequence segments to be in a certain state (e.g.
secondary structure state, order/disorder state, signal 
sequence)

• Include local interactions, i.e. take into account states in 
up- and downstream sequence

• Use homologous sequences to get predictions from many 
sequences with same structure/function

• Use neural networks or similar methods in predictions

• Consensus from many tools is better than just a single 
result (e.g. metaservers)   



Transmembrane (TM) proteins
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• ~30% of proteins in cells (but more than 50% of proteins interacts 
with membranes)

• α-helical type: all membranes and organisms
• β-barrel type: only outer membranes of Gram-negative 
bacteria, lipid-rich cell walls of a few Gram-positive bacteria, 
and outer membranes of mitochondria and chloroplasts

PDB Apr. 08 “Molecule of the Month”

2RH1, Human adrenergic receptor 

Can usually NOT use the same 
predictors for secondary structure 
and other properties as for globular 
proteins

Porin 



Transmembrane (TM) proteins
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• Extremely difficult to solve membrane structures experimentally!
• Only a few hundred structures in the PDB

• Can not use the same predictors for secondary structure as for globular 
proteins
• Special predictors for 

• helical membrane proteins
• β-barrel proteins

• Pattern in TM α-helical proteins is:
• 17-25 mainly hydrophobic TM helices
• <60 residues polar connectors

• Predictions based on scanning for segments with high score for 
hydrophobicity
• Improved with neural networks

Tools:
• TMHMM 
• Phobius

17-25 
residues



TM single-pass protein

T.B. Strøm et al. FEBS 
Open Bio. 4, 321 (2014)

T.E. Willnow et al. Nat. 
Cell Biol. 1, E157 (1999)



Transmembrane (TM) proteins –
Secondary structure prediction

Y. Wang, et al. Nature 444, 179 (2006)

• Prediction of membrane orientation (in-out)
• Positive-inside rule: Residues at cytosolic side are more positively 
charged than at the lumenal/periplasmic side

2NRF

cytosol



3D structure modeling
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Modeling of 3D structure Jon K. Lærdahl,
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• ~135,000,000 sequence records in the traditional GenBank divisions (Apr 2011)
• Several orders of magnitude more sequences in other public databases
• Next Generation Sequencing generates ~20 Gb in a single run

• ~135,000 3D structures in the PDB (i.e. all published structures)
• Solving a single structure experimentally takes 1-3 yrs
• Some protein structures are “close to impossible” to solve, e.g. many 
membrane proteins

• In the cell, the sequence determines the 3D structure of the protein  

MPARALLPRRMGHRTLASTPALWASIPCPRSELRLDLVLPSGQSFRWREQSPAHWSGVLA
DQVWTLTQTEEQLHCTVYRGDKSQASRPTPDELEAVRKYFQLDVTLAQLYHHWGSVDSHF
QEVAQKFQGVRLLRQDPIECLFSFICSSNNNIARITGMVERLCQAFGPRLIQLDDVTYHG 
FPSLQALAGPEVEAHLRKLGLGYRARYVSASARAILEEQGGLAWLQQLRESSYEEAHKAL 
CILPGVGTKVADCICLMALDKPQAVPVDVHMWHIAQRDYSWHPTTSQAKGPSPQTNKELG 

Folding is spontaneous 
in the cell (but often 
with helper molecules, 
chaperones)

The sequence 
determines the 3D 
structure!

Nobel Prize in chemistry 
1972 to Christian B. 
Anfinsen



Optical tweezers Jon K. Lærdahl,
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Stigler et al., Science 334, 512 (2011).



Protein folding
MPARALLPRRMGHRTLASTPALWASIPCPRSELRLDLVLPSGQSFRWREQSPAHWSGVLA
DQVWTLTQTEEQLHCTVYRGDKSQASRPTPDELEAVRKYFQLDVTLAQLYHHWGSVDSHF
QEVAQKFQGVRLLRQDPIECLFSFICSSNNNIARITGMVERLCQAFGPRLIQLDDVTYHG 
FPSLQALAGPEVEAHLRKLGLGYRARYVSASARAILEEQGGLAWLQQLRESSYEEAHKAL 
CILPGVGTKVADCICLMALDKPQAVPVDVHMWHIAQRDYSWHPTTSQAKGPSPQTNKELG 
NFFRSLWGPYAGWAQATPPSYRCCSVPTCANPAMLRSHQQSAERVPKGRKARWGTLDKEI 

Folding is 
spontaneous in the 
cell

Ab initio/de novo structure 
prediction
• Based on physical/chemical laws 
and not already published 
experimental structures

The sequence determines 
the 3D structure!

In the cell

In the computer

Jon K. Lærdahl,
Structural Bioinformatics



Ab initio structural prediction
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• Determine the tertiary structure for a protein based on amino acid 
sequence and chemical and physical laws only
• Does not use prior knowledge of structure from the PDB
• Ab initio quantum chemistry is pure “ab initio”

• Based on solving the Schrödinger equation 
• Is routinely used for chemical systems of up to 20-50 atoms
• Can be used to compute/model the correct 3D structure for 
drug candidates, small metabolites or tiny peptides  
• Will not soon be applicable for large proteins with 1000s of 
atoms

• Ab initio protein 3D structure prediction
• Also called de novo structure prediction/protein modeling
• Is not based on solving the Schrödinger equation
• Instead uses more approximate methods for energy 
minimization/folding (Confusing: This is exactly what is not ab
initio quantum chemistry)
• Extremely computationally intensive
• Very hard! This field is far from mature…
• Only possible (useful/reliable) for small (poly)peptides (less 
than 10-100 residues?) 



Ab initio structural prediction
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• Molecular mechanics/force field calculations – Newtonian 
mechanics to model proteins

• Each atom simulated as a single particle
• Each particle has a size (van der Waals radius), charge and 
polarizability
• Bonded interactions are treated as “springs” with a given 
equilibrium bond distance – same for bond angles and 
dihedral angles
• Additional terms, e.g. non-bonded collisions, solvent etc.

Brooks et al., J. Comput. Chem. 30, 1545 (2009).



Ab initio structural prediction
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• Does not use prior knowledge of structure from the PDB
• That is why they are known as ab initio

• Still, some programs known as ab initio protein modeling programs also use 
some information from the PDB, for example structures for small fragments
• At least in some respects based on the “paradigm” of Anfinsen that all 
information that is needed to determine the tertiary structure is in the primary 
sequence

• Is it really correct?
• Certainly not always!

• Folding chaperons
• Ribosomal environment, timing of protein synthesis, solvent, 
salinity, pH, temperature, metabolites and other macromolecules, 
etc. may (and do) in many cases contribute to the folding process

MPARALLPRRMGHRTLASTPALWASIPCPRSELRLDLVLPSGQSFRWREQSPAHWSGVLA
DQVWTLTQTEEQLHCTVYRGDKSQASRPTPDELEAVRKYFQLDVTLAQLYHHWGSVDSHF
QEVAQKFQGVRLLRQDPIECLFSFICSSNNNIARITGMVERLCQAFGPRLIQLDDVTYHG 
FPSLQALAGPEVEAHLRKLGLGYRARYVSASARAILEEQGGLAWLQQLRESSYEEAHKAL 
CILPGVGTKVADCICLMALDKPQAVPVDVHMWHIAQRDYSWHPTTSQAKGPSPQTNKELG 

• All problems with ab initio modeling will never be 
completely solved?
• They have certainly not been solved yet! 

?

or



David Baker
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Experimental 3D structure of my 
colleague

Model 1 Model 2

Model 3 Model 4 Model 5

I-TASSER from Yang Zhang-lab is another 
possibility. Ranked as no. 1 in ”structure prediction 
competition” in 2006, 2008, 2012, and 2014 
(Actually not pure ab initio).



3D structure modeling

• Ab initio/de novo – very hard…

• Threading/fold recognition
• Homology modeling



Protein structure evolution
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• Reason for similarities in sequence/structure is 
common ancestry, the sequences/structures 
are homologs
• Structures evolves slowly
• Sequence evolves faster

• Many mutations does not change the 
structure

• Only some few 1000 superfamilies in the PDB
• Only a factor 2-10(???) as many superfamilies 
in Nature? Some few 1000 folds?

SCOP CATH


