
MBV4410/9410 Fall 2016

Dec. 5 – Introduction to R

Outline

Monday
Before lunch:
§ Transcriptomics (lectures)

After lunch:
§ Basic R/RStudio (lecture)
§ Installing/setting up R/RStudio
§ Basic R (practical)

Tuesday
Before lunch:
§ Transcriptomics (lectures)

After lunch:
§ Bioconductor (lecture)
§ Transcriptomics/DE-test (practical)

R

RStudio

RStudio

Console

Text editor

View
plots,
packages,
files
& more

Environ-
ment
window

Some basic R

Most of this is taken from http://www.r-tutor.com/r-introduction

Download R https://cran.r-project.org/mirrors.html
(Pick one of the nearest mirrors)

Download RStudio https://www.rstudio.com/

Variable assignment

> x = 1
> x
[1] 1
> x <- 1
> x
[1] 1
>

We assign values to variables with the assignment operator "=” (can
also use “<-”). Just typing the variable by itself at the prompt will
print out the value.

Functions

> c(1, 2, 3)
[1] 1 2 3

R functions are invoked by its name, then followed by the
parenthesis, and zero or more arguments. The following apply the
function c to combine three numeric values into a vector.

Comments

> 1 + 1 # this is a comment
[1] 2

All text after the hash tag"#" within the same line is considered a
comment.

Getting help

> help(c)

R provides extensive documentation. For example, entering ?c or
help(c) at the prompt gives documentation of the function c in R.

Basic data types

> x = 10.5 # assign a decimal value
> x # print the value of x
[1] 10.5
> class(x) # print the class name of x
[1] "numeric"

Numeric

> as.integer(3.14) # coerce a numeric value
[1] 3

Integer

Basic data types

> x = 1; y = 2 # sample values
> z = x > y # is x larger than y?
> z # print the logical value
[1] FALSE
> class(z) # print the class name of z
[1] "logical"

Logical
A logical value is often created via comparison between variables.

Basic data types

> u = TRUE; v = FALSE
> u & v # u AND v
[1] FALSE
> u | v # u OR v
[1] TRUE
> !u # negation of u
[1] FALSE

Logical
Standard logical operations are "&" (and), "|" (or), and "!" (negation).

Basic data types

x = as.character(3.14)
> x # print the character string
[1] "3.14"
> class(x) # print the class name of x
[1] "character"

Character
A character object is used to represent string values in R. We
convert objects into character values with the as.character()
function:

Basic data types

> fname = "Joe"; lname ="Smith"
> paste(fname, lname)
[1] "Joe Smith"

Character
Two character values can be concatenated with the paste function.

> substr("Mary has a little lamb.", start=3, stop=12)
[1] "ry has a l"

To extract a substring, we apply the substr function. Here is an
example showing how to extract the substring between the third and
twelfth positions in a string.

Basic data types

> sub("little", "big", "Mary has a little lamb.")
[1] "Mary has a big lamb."

And to replace the first occurrence of the word "little" by another
word "big" in the string, we apply the sub function.

Vectors

> c(2, 3, 5)
[1] 2 3 5

A vector is a sequence of data elements of the same basic type.
Members in a vector are officially called components (but usually
members).

Here is a vector containing three numeric values 2, 3 and 5.

> c(TRUE, FALSE, TRUE, FALSE, FALSE)
[1] TRUE FALSE TRUE FALSE FALSE

And here is a vector of logical values.

Vectors

> c("aa", "bb", "cc", "dd", "ee")
[1] "aa" "bb" "cc" "dd" "ee"

A vector can contain character strings.

> length(c("aa", "bb", "cc", "dd", "ee"))
[1] 5

The number of members in a vector is given by the length function.

Combining vectors

> n = c(2, 3, 5)
> s = c("aa", "bb", "cc", "dd", "ee")
> c(n, s)
[1] "2" "3" "5" "aa" "bb" "cc" "dd" "ee"

Vectors can be combined via the function c. For example, the
following two vectors n and s are combined into a new vector
containing elements from both vectors.

The values are now strings

Part of a vector

> A <- c("aa", "AA", "bb", "BB", "cc", "CC")
> B <- c("aa", "bb", "cc", "dd", "ee", "ff")
> x <- A %in% B
> x
[1] TRUE FALSE TRUE FALSE TRUE FALSE
> A[x]
[1] "aa" "bb" "cc"

Vector index

> s = c("aa", "bb", "cc", "dd", "ee")
> s[3]
[1] "cc"

We retrieve values in a vector by declaring an index inside a single
square bracket "[]" operator. NB! R is one-based (not zero-based
like Python)

Negative index

> s[-3]
[1] "aa" "bb" "dd" "ee"

If the index is negative, it removes the member whose position has
the same absolute value as the negative index. For example, the
following creates a vector slice with the third member removed.

Numeric Index Vector

> s = c("aa", "bb", "cc", "dd", "ee")
> s[c(2, 3)]
[1] "bb" "cc"

A new vector can be sliced from a given vector with a numeric index
vector, which consists of member positions of the original vector to
be retrieved.

> s[2:4]
[1] "bb" "cc" "dd"

Or using a range index

Matrices

> A = matrix(
+ c(2, 4, 3, 1, 5, 7), # the data elements
+ nrow=2, # number of rows
+ ncol=3, # number of columns
+ byrow = TRUE) # fill matrix by rows

> A # print the matrix
[,1] [,2] [,3]

[1,] 2 4 3
[2,] 1 5 7

Matrices

> A[2, 3] # element at 2nd row, 3rd column
[1] 7

An element at the mth row, nth column of A can be accessed by the
expression A[m, n].

> A[2,] # the 2nd row
[1] 1 5 7

The entire mth row A can be extracted as A[m,].

Similarly, the entire nth column A can be extracted as A[,n].

> A[,3] # the 3rd column
[1] 3 7

[,1] [,2] [,3]
[1,] 2 4 3
[2,] 1 5 7

Matrices

> A[,c(1,3)] # the 1st and 3rd columns
[,1] [,2]

[1,] 2 3
[2,] 1 7

We can also extract more than one rows or columns at a time.

[,1] [,2] [,3]
[1,] 2 4 3
[2,] 1 5 7

Matrices

> colnames(A) = c("col1", "col2", "col3")
> A

col1 col2 col3
[1,] 2 4 3
[2,] 1 5 7
> rownames(A) = c("row1", "row2")
> A

col1 col2 col3
row1 2 4 3
row2 1 5 7

We can give names to the columns and rows using colnames() and
rownames().

[,1] [,2] [,3]
[1,] 2 4 3
[2,] 1 5 7

Matrices

> dimnames(A) = list(
+ c("row1", "row2"), # row names
+ c("col1", "col2", "col3")) # column names

> A # print A
col1 col2 col3

row1 2 4 3
row2 1 5 7

Or in one go using dimnames().

[,1] [,2] [,3]
[1,] 2 4 3
[2,] 1 5 7

Matrices

> A["row2", "col3"] # element at 2nd row, 3rd column
[1] 7

If we assign names to the rows and columns of the matrix, than we
can access the elements by names.

[,1] [,2] [,3]
[1,] 2 4 3
[2,] 1 5 7

Transpose

> t(A) # transpose the matrix A
[,1] [,2]

[1,] 2 1
[2,] 4 5
[3,] 3 7

We construct the transpose of a matrix by interchanging its columns
and rows with the function t.

[,1] [,2] [,3]
[1,] 2 4 3
[2,] 1 5 7

Combining matrices

> B = matrix(c(7, 4, 2), nrow=1, ncol=3)
> B

[,1] [,2] [,3]
[1,] 7 4 2

The columns of two matrices having the same number of rows can
be combined into a larger matrix.

[,1] [,2] [,3]
[1,] 2 4 3
[2,] 1 5 7

Combining matrices

> rbind(A, B)
[,1] [,2] [,3]

[1,] 2 4 3
[2,] 1 5 7
[3,] 7 4 2

Then we can combine the rows of A and B with rbind (row bind).

BTW; Columns can be combined with cbind.

[,1] [,2] [,3]
[1,] 2 4 3
[2,] 1 5 7

Lists

> n = c(2, 3, 5)
> s = c("aa", "bb", "cc", "dd", "ee")
> b = c(TRUE, FALSE, TRUE, FALSE, FALSE)
> x = list(n, s, b, 3) # x contains copies of n, s, b
> x
[[1]]
[1] 2 3 5
[[2]]
[1] "aa" "bb" "cc" "dd" "ee”
[[3]]
[1] TRUE FALSE TRUE FALSE FALSE
[[4]]
[1] 3

A list is a generic vector containing other objects. For example, the
following variable x is a list containing copies of three vectors n, s,
b, and a numeric value 3.

Data frames

> n = c(2, 3, 5)
> s = c("aa", "bb", "cc")
> b = c(TRUE, FALSE, TRUE)
> df = data.frame(n, s, b) # df is a data frame
> df

n s b
1 2 aa TRUE
2 3 bb FALSE
3 5 cc TRUE

A data frame is used for storing data tables. It is a list of vectors of
equal length. For example, the following variable df is a data frame
containing three vectors n, s, b.

Data frames can be indexed, sliced and combined like matrices

Data frames

> df$n
[1] 2 3 5
> df$b
[1] TRUE FALSE TRUE

The individual columns can be accessed by the “$” sign. Very useful
when you are plotting a single or more columns.

Data frames

> mtcars
mpg cyl disp hp drat wt ...

Mazda RX4 21.0 6 160 110 3.90 2.62 ...
Mazda RX4 Wag 21.0 6 160 110 3.90 2.88 ...
Datsun 710 22.8 4 108 93 3.85 2.32 ...

............

There are many built-in data frames in R for testing purposes. A
popular one is called mtcars.

The top line of the table, called the header, contains the column
names. Each horizontal line afterward denotes a data row, which
begins with the name of the row, and then followed by the actual
data. Each data member of a row is called a cell.

Viewing

> head(mtcars, 3) # view top 3 lines
mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

You can use head() and tail() to see the top and last lines of an
object (like in Unix)

Read/write files

> mydata = read.table("mydata.txt")
> mydata

V1 V2 V3
1 100 a1 b1
2 200 a2 b2
3 300 a3 b3
4 400 a4 b4

Assume you have a text file called mydata.txt

100 a1 b1
200 a2 b2
300 a3 b3
400 a4 b4

Read/write files

> mydata = read.table("mydata.txt“, sep = “\t“, dec = “,“, header = TRUE)
> mydata

c1 c2 c3
1 100 a1 b1
2 200 a2 b2
3 300 a3 b3
4 400 a4 b4

If the file is tab-separated (i.e. tabs (\t) between the columns, use
sep = “\t”. If the first line specifies the names of the columns, use
header = TRUE

c1 c2 c3
100,1 a1 b1
200,2 a2 b2
300,3 a3 b3
400,4 a4 b4

There are many more options in read.table(). See help(read.table).
There are also other functions for reading files. E.g read.csv() and
read.csv2() for reading comma separated files, and read.xls() for
excel sheets.

Remove objects

> X = 1
> rm(x)

And autocomplete also works in R…

Press the tab-button to autocomplete existing objects (and most
other things. Try it...)

Working directory

> getwd() # prints the current working directory
> setwd(”file/path”) # change the working directory

Note that the forward slash should be used as the path separator
even on Windows platform.

> setwd("C:/MyDoc")

Packages

> install.packages(”package”) # install the package from CRAN
> library(pacakge) # load the package to make it active

One of the main strengths of R are the many available packages
which gives extra functionality in addition to the built-in functions.
Most packages and information can be found at
https://cran.r-project.org/

• Now we will install the necessary packages for tomorrow
• And then you can do some basic exercises in R – and go

home!

