
16/11/2016

1

Control flow

MBV-INFx410

Fall 2016

Indentation and scope

• Python does not use brackets or other
symbols to delineate a block of code

• Python uses indentation – either tab or
space

• Note: variables can only be seen and used
within the block of code it is in – this is
called scope

Statements

• Statements: small stand-alone pieces of
code

• Simple statements:

- print 42

- my_list = [1, 4, 8]

- largest = max(my_list)

• Can combine statements – often done
with control flow statements

Boolean expressions –
True or False

• Comparisons

• Other values

- True: non-empty lists, numbers != 0, and more

- False: 0 and None

A > B A greater than B

A < B A smaller than B

A >= B A greater than or equal to B

A <=B A smaller than or equal to B

A == B A equal to B

A != B A not equal to B

16/11/2016

2

Doing comparisons

>>> a = 1
>>> b = 3
>>> print a == b
False
>>> print a < b
True
>>> a = "Hello"
>>> b = "World"
>>> print a != b
True
>>> print a < b
True
>>>

Simple comparisons

Assigning values to variables

Is 1 equal to 3?

Is 1 smaller than 3?

Assigning new values to variables

Is Hello equal to World?

Is Hello smaller than World?

Python logical operators

Operator Description Example

AND Logical and operator. If both left and
right side are true, condition
becomes true

a and b
a < b and c
a == b and c > d

OR Logical or operator. If at least one of
the two sides is true, condition
becomes true

a or b
a < b or c
a == b or c > d

NOT Logical not operator. Reverses the
boolean value of a expression. If
expression was true, it becomes
false, and vice versa.

a and not b
a < b or not c
a == b and not c > d

Boolean expression <LOGICAL OPERATOR> Boolean expression

Combining comparisons

Simple comparisons
Comparisons can
be combined

>>> a = 1
>>> b = 4
>>> c = "Hello"
>>> d = "World"
>>> print a < b and c < d
True
>>> print a < b and c > d
False
>>> print a < b or c > d
True
>>> print a < b and not c > d
True
>>>

>>> a = 1
>>> b = 3
>>> print a == b
False
>>> print a < b
True
>>> a = "Hello"
>>> b = "World"
>>> print a != b
True
>>> print a < b
True
>>>

Control flow

• Control flow determines which blocks of
code that will be run

• One conditional statement

- If - elif - else

• Two iteration statements

- For: iterate over group of elements

- While: do until something is true

16/11/2016

3

If – elif - else

• Structure:

if <boolean expression>:
code block 1

elif <boolean expression>:
code block 2

else:
code block 3

• Optional: elif and else

• Can have more than one elif

• Only one of these code blocks are executed

• Executed block: the one whose expression first
evaluates to True (else always True)

Note the : (colon)
has to be there!

Note: indentation
is mandatory!

Basic if example

• Basic test:

>>> fakevariable = 12
>>> if fakevariable > 10:
... print "Var is greater than 10"
...
Var is greater than 10
>>>

Note indentation,
done by typing Tab

Adding an else

• Can add an else to the if statement –
executed as default if nothing else is true
>>> fakevariable = 12
>>> if fakevariable > 10:
... print "Variable greater than 10"
... else:
... print "Variable not greater than 10"
...
Variable greater than 10
>>>

First case:
If conditional true -
first statement executed

>>> fakevariable = 9
>>> if fakevariable > 10:
... print "Variable greater than 10"
... else:
... print "Variable not greater than 10"
...
Variable not greater than 10
>>>

Second case:
If conditional not true -
else statement executed

Adding elifs

• Can test on multiple conditions by
introducing one or more elifs
>>> fakevariable = 7
>>> if fakevariable > 10:
... print "Variable greater than 10"
... elif fakevariable > 5:
... print "Variable greater than 5"
... else:
... print "Variable smaller than 5"
...
Variable greater than 5
>>>

IF statements are order sensitive – the
code inside of the first boolean expression
that evaluates as True gets executed!

16/11/2016

4

Testing sequence length

• Get DNA string in from command line

• Assign DNA string to variable DNA

• Calculate the length of the DNA string

• Draft on paper if statement that does the
following:

If string longer than 10 nts:
prints “DNA string is longer than 10 nts”

Else if string is between 5 and 10
prints “DNA string is between 5 and 10 nts”

Otherwise, just
prints “DNA string is shorter than 5 nts”

SeqLen.py

• Have script in your directory

• Run script, give it DNA strings so that all
three clauses are triggered!

• Can you find out something odd about it?

import sys
var DNA will contain the DNA string in question
DNA = sys.argv[1]
textlength = len(DNA)
if textlength > 10:

print "DNA string is longer than 10 nts"
elif textlength > 5 and textlength < 10:

print "DNA string is between 5 and 10 nts"
else:

print "DNA string is shorter than 5 nts"

For

• Structure:

for var in iterable:

code block

• Code block executed for each element in
iterable

• var takes on value of current element

• Iterables are:

-Strings, lists and other data types

Note the : (colon)
has to be there!

For loop on lists

• Can use a for loop to access each
element in the list:

>>> a = [1,2,3,4,5,6,7,8,9]
>>> for var in a:
... print var
...
1
2
3
4
5
6
7
8
9
>>>

Note indentation,
done by typing Tab

var is variable
a is iterable

16/11/2016

5

For loops and manipulation

• Can manipulate data inside the for loop:

>>> a = [1,2,3,4,5,6,7,8,9]
>>> for var in a:
... print var*var
...
1
4
9
16
25
36
49
64
81
>>>

Print words and their lengths

• Have variable containing a list with words

words = ["red", "green", "blue", "yellow”]

• Iterate over list and:

print word, length of word

>>> words = ["red", "green", "blue", "yellow"]
>>> for word in words:
... print word, len(word)
...
red 3
green 5
blue 4
yellow 6
>>>

Nested for loops

• Can have a for loop inside of another loop

• Can you print all 64 codons using five
lines of code?

>>> for number in [1,2,3]:
... for letter in ["A", "B", "C"]:
... print number, letter
...
1 A
1 B
1 C
2 A
2 B
2 C
3 A
3 B
3 C
>>>

>>> dna = "AGCT"
>>> for one in dna:
... for two in dna:
... for three in dna:
... print one+two+three
...
AAA
AAG
AAC
AAT
AGA
AGG
AGC
....

Combining for and if

• Often used to iterate over something, and
make decisions on what to do with it

• Example: iterate over list of DNA strings-
do any of them contain Ns?

16/11/2016

6

OnlyDNAContent.py

• File is in your directory

• Modify: can you add tests for the presence
of Xes and Ys?

Hint: elifs

dnaStrings = ["ATGGC", "CGNA", "TTAG", "ATC"]
for dna in dnaStrings:

if "N" in dna:
print dna + " is not valid"

else:
print dna + " does not contain Ns”

While loop

• Structure

while <boolean expression> == True:

code block

• Important: code block MUST change truth
value of expression, otherwise infinite loop

While example

• Iterate over all codons in DNA string
>>> DNA = "AAAGGGCCCTTTG"
>>> i = 0
>>> while i < len(DNA):
... print DNA[i:i+3]
... i = i + 1
...
AAA
AAG
AGG
GGG
GGC
GCC
CCC
CCT
CTT
TTG
TG
G
>>>

Note i = i + 1, increment
the counter so that expression
will at some point be false

Slicing DNA into codons

• Have DNA string in variable DNA

• Goal: print out all codons in the string

• Try modifying code on previous slide

• 1: modify i to skip to next codon

> set i to increment with 3 instead of 1

• 2: ensure that we only get chunks of three, and not just
two or one letters

> Subtract two from length of DNA in while loop

0 1 2 3 4 5 6 7 8 9 10 11 12

A A A G G G C C C T T T G

16/11/2016

7

Slicing DNA into codons

>>> DNA = ” AAAGGGCCCTTTG"
>>> i = 0
>>> while i < len(DNA) - 2:
... print DNA[i:i+3]
... i = i + 3
...
AAA
GGG
CCC
TTT
>>>

GCdecider.py

• Copy GCcontent.py script into new file
called GCdecider.py

• Change script so that,

- If GC content is equal or above 50%, print out
"GC content is equal or above 50%

- else print out "GC content is below 50%”

• Change the DNA input to trigger the else
clause

GCdecider.py

import sys
DNA = sys.argv[1]

count G's and C's
g = DNA.count("C")
c = DNA.count("G")
gccontent = (g+c)/float(len(DNA))*100

if gccontent >= 50.0:
print "GC content equal or higher than 50%"

else:
print "GC content lower than 50%"

TranslateProtein.py

• Goal: Translate DNA open reading frame into
protein

• Need translation table: dictionary with mapping
from DNA to protein

• How: while loop that iterates over string, takes
three and three letters and looks that up in the
translation table

• Each new amino acid added to those already
translated

• Result: protein

16/11/2016

8

TranslateProtein.py

import sys
#input on cmd line should be ATGCAGAACATA
dna = sys.argv[1]
shortened translation table:
codon_table = {"ATA":"I", "ATG":"M", "ACA":"T", \
"AAC":"N", "CGA":"R", "CAG":"Q" }

empty string that we can add onto
protein = ""
i = 0

look at the while loop earlier, what would you have
here to get triplets?
Remember: lookup in translation table is
codon_table[triplet], and concatenation is done
by adding using a + sign.

TranslateProtein.py
our string:
dna = "ATGCAGAACATA"

shortened translation table:
codon_table = {"ATA":"I", "ATG":"M", "ACA":"T", \
"AAC":"N", "CGA":"R", "CAG":"Q" }

empty string that we can add onto
protein = ""
i = 0

Iterating over the string:
while i < len(dna) - 2:

codon = dna[i:i + 3]
protein = protein + codon_table[codon]
i = i + 3

print protein

[karinlag@freebee]~/teaching% python TranslateProtein.py
MQNI
[karinlag@freebee]~/teaching%

