
17.11.2016

1

Programming in Python

MBV-INFx410

Fall 2016

Who am I?

• Karin Lagesen, bioinformatician at the
Veterinary Institute, Oslo

• National biomedical research Institute,
centering on animal and fish health, and
food safety

• karin.lagesen@vetinst.no

Programs

• Everything that happens on a computer is
done by a program

• A program is a set of instructions that tells
the computer exactly what to do

• Computers very literal – only do what the
program tells them to do

Why program?

• Increases flexibility: can analyze what you
want, not just what somebody else thought
was smart

• Solve problems such as

- Files being in the wrong format

- Extract subsets of data

- Modify data according to criteria

- Chain other programs together in a pipeline

17.11.2016

2

How to program

• Program: ordered set of instructions

• Programming can be compared to a:

- Cooking recipe

- Ikea furniture instructions

- Lab protocol

• Programming language: instruction set

How to make a program

• Need a programming language

• Programming language dictates the set of
available instructions

• Several types of languages – several
types of instruction sets

• Some languages require the program to
be compiled before running, others
interpreted on the fly

Interpreted languages

• Program interpreted "on-the-fly"

• Programs often called scripts

• Example of interpreted languages:

- General purpose: perl, python

- Special purpose: R

• Possible disadvantage: can be slower
than compiled programs.

About python

• General purpose programming language,
created in 1991

• Goal: be very concise and enable clear
programming

• Designed to be very readable because

- Easier to find bugs

- Easier to understand later

- Easier to maintain

- Easier to learn

17.11.2016

3

Interactive vs. batch mode

• Python can be used interactively

• Useful for testing etc

• Most common: save code in text file, run
with python

• Called batch mode

Interactive shell example

[karinlag@freebee]~% module load python2

[karinlag@freebee]~% python
Python 2.7.10 (default, Jul 1 2015, 11:02:23)
[GCC Intel(R) C++ gcc 4.4 mode] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> print 2+2
4
>>> print 2*6
12
>>> print "Hello World"
Hello World
>>> print len("Hello World")
11
>>>

Task: log in to freebee, run this example.

Creating script

• A script is code in a file which is run

• Create script file (use nano etc)

- Insert different calculations

- Save the file as first.py

• Run script

• Note: in script have to use print to get
results

• Print more things: use comma between
elements

first.py

• Open nano

• Input text below into file, save file as
first.py

• Run file like this: python first.py

print 2+2
print 4-2
print 3*6
print 2**8

4
2
18
256

Text found in script file Result when running it

17.11.2016

4

Python data types

• Data type: the different kinds of data that python
can deal with

• Numbers: integers and floats (decimal
numbers)

• Strings: text

• Lists: ordered collection of elements

• Dictionaries: mapping elements

• Python has additional types not discussed in this
course

Two different type features

StringsLists Numbers

Sequence
datatypes

Immutable
datatypes

Order matters Cannot be
changed

Python operators Dealing with numbers

>>> print 2+2
4
>>> print 4-2
2
>>> print 5*23
115
>>> print 12/6
2
>>> print 11/6
1
>>> print 11.0/6
1.8333333333333333
>>>

Integer division rounds
downwards, need to make
sure one is a decimal number
to get a decimal answer.

17.11.2016

5

Strings

• Used to keep text

• Use ', " or ''' to delineate

• Remember: same type on each end

• Newline: \n

• Tab: \t

String operations

• "string".replace("X", "Y")

- Replaces all Xes with Ys in string

• "string".count("X")

- Counts all occurrences of X in string

• "string".find("X")

- Reports where the first occurrence of X is in string –
zero based

• "string".split("character")

- Splits string on all occurrences of X in string, default
is whitespace (tab, space)

• Concatenate: word1 + word2

String examples

>>> print "Abracadabra".replace("a","X")
'AbrXcXdXbrX'
>>> print "Abracadabra".count("a")
4
>>> print "Abracadabra".find("a")
3
>>> print "Abracadabra".split("a")
['Abr', 'c', 'd', 'br', '']
>>> print “Abracadabra” + “AliBaba”
'AbracadabraAlibaba'

String questions

• Have string "ATG,GTC,GGC"

• How do you do the following:

- Count how many Gs the string contains?

- Replace all Ts with Us

- Split the string on commas

>>> print "ATG,GTC,GGC".count("G")
4
>>> print "ATG,GTC,GGC".replace("T", "U")
'AUG,GUC,GGC'
>>> print "ATG,GTC,GGC".split(",")
['ATG', 'GTC', 'GGC']
>>>

17.11.2016

6

Variables

• A variable is used to carry data in a
program

• Naming variables:

- Letters, numbers and _

- CasE sEnsitive

- Numbers may not be first

- Some words are reserved

- Convention: small letters, underscore to
separate words

Reserved words

Using variables

• We are using the variable instead of the
string or number itself

• Can do the same thing to another string or
number

>>> a = 2
>>> b = 3
>>> print a*b
6
>>> print a = "Hello"
>>> print b = "World"
>>> print a, b
Hello World
>>>

Variable assignment:
giving a variable a value,
i.e. specifying the content
of the variable

Dynamic, strong typing

• Dynamic: no need to specify type

• Strong: python objects if we do something a
type does not support

>>> a = 2
>>> print a
2
>>> print a/2
1
>>> a = "Hello"
>>> print a
Hello
>>> print a/2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for /: 'str' and 'int'
>>>

17.11.2016

7

Lists

• Ordered collection of elements

• Can hold elements of any type, including
another list

• Can be sorted (in place) using .sort()

>>> list1 = [1, "2", "hello", 4]

>>> list1 = ["a", "c", "b"]
>>> list2 = ["X", "Y", list1]
>>> print list2
['X', 'Y', ['a', 'c', 'b']]

>>> list1.sort()
>>> print list1
['a', 'b', 'c']

Lists: created by having
comma between elements,
and having [] around them

Adding to list

• Create empty list:

- list1 = []

• Create list by splitting string on char:

- list1 = string.split("character")

• Add element to end of list:

- list1.append(elem)

• Insert in list at specific position:

- list1.insert(pos,elem)

List adding example

>>> list1 = "A,B,C,D,E".split(",")
>>> print list1
['A', 'B', 'C', 'D', 'E']
>>> list1.append('F')
>>> print list1
['A', 'B', 'C', 'D', 'E', 'F']
>>> list1.insert(3,'G')
>>> print list1
['A', 'B', 'C', 'G', 'D', 'E', 'F’]

`

Adding to list

Insert new element in list

Take text, split,
thereby creating list

List removal

• Remove specified element

- list1.remove(elem)

• return elem in index, default is last

- list1.pop(index)

17.11.2016

8

Input from command line

• Input is stored in list called sys.argv

• Everything after script name on command line is
in list called sys.argv

• To use: import sys on top

[karinlag@freebee]~/teaching% cat sys_argv.py
import sys
print sys.argv
[karinlag@freebee]~/teaching% python sys_argv.py a b c
['sys_argv.py', 'a', 'b', 'c']
[karinlag@freebee]~/teaching% python sys_argv.py 1 2
['sys_argv.py', '1', '2']
[karinlag@freebee]~/teaching%

A command line calcuator

• Task: create program that takes two words in on
command line, glues them together, outputs the
results.

• Do: open nano, and write in the code in the box
below, save as add.py

• Run: python add.py word1 word2

import sys

first = sys.argv[1]
second = sys.argv[2]

sum = first + second
print sum

Type conversions

• Everything that comes in from the command line
is a string

• How to convert:

• int(X)
• string cannot have decimals

• floats will be floored

- float(X)

- str(X)

Command line calculator cont.

• Have to convert the input to add them
together

• How: newVariable = int(inputedValue)

• newVariable now contains value as an int

import sys

first = int(sys.argv[1])
second = int(sys.argv[2])

sum = first + second
print sum

17.11.2016

9

Sequence methods

• Works on strings and lists

• Indexing

- Index starts at zero

- Negative indices go from right edge

• Slicing

- Can access portions of sequence using indices

• In operator – test for membership

• Concatenation – add two together with +

• Len, min, max

Indices

• Note: for slicing, it is
[from and including : to but excluding]

0 1 2 3 4 5 6

A B C D E F G

-7 -6 -5 -4 -3 -2 -1

>>> text = "ABCDEFG"
>>> print text[2]
'C'
>>> print text[-2]
'F'
>>> print text[2:4]
'CD'
>>> print text[2:-2]
'CDE'
>>> print text[:4]
'ABCD'
>>> print text[4:]
'EFG'
>>>

REMEMBER: Python
is zero-based!

: used for slicing

If nothing before/after :,
shorthand for begin/end

in operator

• Test if element is in sequence

• Works with lists and strings

>>> X = "ABCDEF"
>>> print X
'ABCDEF'
>>> print "Y" in X
False
>>> print "BC" in X
True
>>>

>>>> X = [1,4,8,2,9]
>>> print X
[1, 4, 8, 2, 9]
>>> print 5 in X
False
>>> print 8 in X
True
>>>

Concatenation

• Concatenation: + sign

• Can only concatenate same types

>>> a = [1,2]
>>> b = [3,4]
>>> print a + b
[1, 2, 3, 4]
>>> c = 56
>>> print a + c
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list
>>>

17.11.2016

10

Len, min, max

• Len: length of sequence object

• Min: minimum

• Max: maximum

>>> txt1 = "ABCDEF"
>>> print len(txt1)
6
>>> print max(txt1)
'F'
>>> print min(txt1)
'A'
>>>

Sequence manipulation
questions

• Have the list [1,4,8,2,10]

- Find the maximum number

- Find out if the number 9 is in the list

- Add the number 9 to the list

- Is number 9 in the list now?

- Use sort to find the two lowest numbers

Sequence manipulation

>>> list1 = [1,4,8,2,10]
>>> print list1
[1, 4, 8, 2, 10]
>>> print max(list1)
10
>>> print 9 in list1
False
>>> list1.append(9)
>>> print list1
[1, 4, 8, 2, 10, 9]
>>> print 9 in list1
True
>>> list1.sort()
>>> print list1
[1, 2, 4, 8, 9, 10]
>>> print list1[:2]
[1, 2]
>>>

Define list

Max in list

Is 9 in list?

Add 9 to list

Retest for 9

Sort list

Get two lowest numbers

Dictionaries

• Stores unordered, arbitrarily indexed data

• Consists of key-value pairs

- dict = {key:value, key:value, key:value...}

• Note: keys must be immutable!

- ergo: numbers or strings

• Values may be anything, incl. another
dictionary

• Mainly used for storing associations or
mappings

17.11.2016

11

Create, add, lookup, remove

• Creation:

- mydict = {} (empty), or

- mydict = { mykey:myval, mykey2:myval2 }

• Adding:

- mydict[key] = value

• Lookup:

- mydict[key]

• Remove:

- del mydict[key]

Dictionary: created by : between
key:value, comma between pairs,
and {} around everything.

Dictionary methods

• All keys:

- mylist.keys() - returns list of keys

• All values:

- mydict.values() - returns list of values

• All key-value pairs as list of tuples:

- mydict.items()

• Get one specific value:

- mydict[key]

• Test for presence of key:

- key in mydict – returns True or False

Dictionary example
>>> dict1 = {}
>>> dict1["georg"] = "kate"
>>> print dict1
{'georg': 'kate'}
>>> dict1["blue"] = 4
>>> print dict1
{'blue': 4, 'georg': 'kate'}
>>> dict1[5] = "red"
>>> print dict1
{'blue': 4, 5: 'red', 'georg': 'kate'}
>>> print dict1["blue"]
4
>>> print dict1.keys()
['blue', 5, 'georg']
>>> print dict1.values()
[4, 'red', 'kate']
>>> print "georg" in dict1
True
>>> print "kate" in dict1
False

Define dictionary

Add to dict

Lookup key 5

Show all keys

Show all values

Test if element is in dict,
NOTE: only looks in keys,
not values.

Dictionary questions

• Have this dictionary:
dict1 = {"A": 1, 1:"A", "B":[1,2,3]}

• Find out the following:
• how many key – value pairs are there?

• add the key value pair "str": 2 to the dictionary

• print the value that is stored with key "str"

• Show all values in dictionary

17.11.2016

12

Dictionary manipulation

>>> dict1 = {"A": 1, 1:"A", "B":[1,2,3]}
>>> print len(dict1)
3
>>> dict1["str"] = 2
>>> print dict1["str"]
2
>>> print dict1.values()
[1, 'A', [1, 2, 3], 2]
>>>

Define dictionary

Length works as before

Adding "str":2

Print the value of "str"

Print all values

What does this script do?

text = "ATCCGGAGGAGGA"
As = text.count("A")
Ts = text.count("T")
print "Length of", text, "is", len(text)
print "Nos of As is", As
print "Nos of Ts is", Ts
print "AT content is", (As + Ts)/float(len(text))

Length of ATCCGGAGGAGGA is 13
Nos of As is 4
Nos of Ts is 1
AT content is 0.384615384615

Modify: how do you calculate
percentages instead?

Calculate GC content

• GCcontent.py

- Get DNA string from command line:
AGCAGATCAGCGA

- Calculate the frequency of Gs and Cs
separately in the string

- Calculate the frequency of the dinucleotide
"GC" in the input string

- Print the results to screen

GCcontent.py

import sys
DNA = sys.argv[_]

count G's, C's and dinculotide 'GC’
g = ___.count(___)
gfreq = g/float(len(___))
c = DNA.___(___)
cfreq = _/_____(len(DNA))
gc = DNA.count(____)/_____(len(___))

print "Frequency of Gs: ", ____
print "Frequency of Cs: ", _____
print "Frequency of GCs:", ______

Fill in the blanks!

17.11.2016

13

GCcontent.py

import sys
DNA = sys.argv[1]

count G's, C's and dinculotide 'GC'
g = DNA.count("C")
gfreq = g/float(len(DNA))
c = DNA.count("G")
cfreq = c/float(len(DNA))
gcfreq = DNA.count("GC")/float(len(DNA))

print "Frequency of Gs:", gfreq
print "Frequency of Cs:", cfreq
print "Frequency of GCs:", gcfreq

[karinlag@freebee]% python GCcontent.py AGCAGATCAGCGA
Frequency of Gs: 0.230769230769
Frequency of Cs: 0.307692307692
Frequency of GCs: 0.153846153846
[karinlag@freebee]~/teaching/mbvinf_2013%

Print open reading frame

• ORF.py

- Get string from command line:
ATCAATGAGATTACAGAGCTAAGAC

- Replace all Ts with Us

- Find position of start codon AUG

- Find position of stop codon UAA

- Print sequence from (including) start codon to
stop codon (excluding)

ORF.py
import sys
seq = sys.____[1]
print "Sequence is '" + ___ + "’"

replace all Ts with Us
seq = seq._______("T","U")

find position of start codon AUG
start = seq.____("AUG")

find position of stop codon UAA
stop = ___.find(_____)

print sequence from (including) start codon
to stop codon (excluding)
print "Sequence between start and stop is ", seq[_____:stop]

ORF.py
import sys
seq = sys.argv[1]
print "Sequence is '" + seq + "’"

replace all Ts with Us
seq = seq.replace("T","U")

find position of start codon AUG
start = seq.find("AUG")

find position of stop codon UAA
stop = seq.find("UAA")

print sequence from (including) start codon
to stop codon (excluding)
print "Sequence between start and stop is ", seq[start:stop]

[karinlag@freebee]$ python ORF.py
Sequence is 'ATCAATGAGATTACAGAGCTAAGAC'
Sequence between start and stop is AUGAGAUUACAGAGC
[karinlag@titan mbvinf_2013]$

