Difference between revisions of "Neurotransporter Atlas: GLT1"

From projects.navigator3
Jump to: navigation, search
(Access image repository)
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span style="font-family:georgia,serif;">'''Welcome to NT-atlas, a part of the Rodent Brain WorkBench'''</span>
+
== <span style="font-family:georgia,serif;">About</span> ==
  
<span style="font-family:georgia,serif;">''NT-atlas''&nbsp;is an online public neuroscience data repository for extensive documentation of the distribution of glutamate transporters (Excitatory Amino Acid Transporters: EAATs). It provides access to collections of high resolution image data showing the distribution of glutamate receptors in mouse and rat brains.</span>
+
Glutamate is the major excitatory transmitter in the central nervous system (Danbolt, Prog. Neurobiol. 65:1-105, 2001), and it is inactivated by cellular uptake, mostly catalyzed by the glutamate transporters GLT1 (slc1a2, excitatory amino acid transporter [EAAT2]) subtype expressed at high levels in brain astrocytes and at lower levels in neurons. Three C-terminal variants of EAAT2 exist: GLT1a (Pines et al., Nature 360:464-467, 1992), GLT1b (Utsunomiya-Tate et al., FEBS Lett 416:312-326,1997), and GLT1c (Rauen et al., Neurochem. Int. 45:1095-1106, 2004). The Neurotransporter Atlas: GLT1 is an interactive resource providing access to a comprehensive collection of microscopic images showing the brain-wide distribution of GLT1 in the mouse and rat brain, visualized by immunohistochemistry using antibodies against GLT1a and GLT1b. To facilitate identification of anatomical location adjacent section were stained to reveal cyto- and myeloarchitecture. 
 
 
<span style="font-family:georgia,serif;">''NT-atlas''&nbsp;is part of the Rodent Brain WorkBench, a new research and development project funded by The Research Council of Norway and the Centre for Molecular Biology and Neuroscience.</span>
 
 
 
<span style="font-family:georgia,serif;">This website is under development. The first data presented concern distributions of the EAAT2 (GLT1) subtype and are based on data published in:</span>
 
 
 
<span style="font-family:georgia,serif;"><span style="font-size: 11.960000038147px; line-height: 18.3944797515869px; text-indent: -35px;">Holmseth, Silvia; Scott, Heather A; Real, Katia; Lehre, Knut Petter Dæhlin; Leergaard, Trygve Brauns; Bjaalie, Jan G. & Danbolt, Niels Christian&nbsp;(2009).&nbsp;The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation.&nbsp;</span>''Neuroscience''<span style="font-size: 11.960000038147px; line-height: 18.3944797515869px; text-indent: -35px;">. &nbsp;ISSN&nbsp;0306-4522.&nbsp;</span>''&nbsp;162''<span style="font-size: 11.960000038147px; line-height: 18.3944797515869px; text-indent: -35px;">(4),&nbsp;s&nbsp;1055-&nbsp;1071 .&nbsp;doi:</span>[http://dx.doi.org/10.1016/j.neuroscience.2009.03.048 10.1016/j.neuroscience.2009.03.048]</span>
 
 
 
<span style="font-family:georgia,serif;">Use the links on this page to access the repository. Selected images can be viewed side-by-side in a viewer tool.&nbsp;</span>
 
 
 
<span style="font-family:georgia,serif;"><br/></span>
 
 
 
== <span style="font-family:georgia,serif;">Goals and background</span> ==
 
 
 
<span style="font-family:georgia,serif;">'''The primary&nbsp;goal&nbsp;of&nbsp;the NT-atlas project is&nbsp;:'''</span>
 
 
 
*<span style="font-family:georgia,serif;">To better understand the system of neurotransporters by mapping the distributions of the glutamate transporters across the entire mouse and rat brain</span>
 
 
 
<br/><span style="font-family:georgia,serif;">'''NT-atlas is a part of the Rodent Brain WorkBench project. The goals of this project are:'''</span>
 
 
 
*<span style="font-family:georgia,serif;">to construct a comprehensive database, or several interoperable database systems, that will include structure and structure-function data from whole brain and selected brain regions</span>
 
*<span style="font-family:georgia,serif;">to develop tools for visualization and analysis linked to the databases and allowing detailed investigations to be performed on the data</span>
 
*<span style="font-family:georgia,serif;">to generate a digital atlas system for multiple categories of image data from rat and mouse brain</span>
 
 
 
<span style="font-family:georgia,serif;">&nbsp;</span>
 
 
 
<span style="font-family:georgia,serif;">'''Background:'''</span>
 
 
 
<span style="font-family:georgia,serif;">Glutamate is the major excitatory transmitter in the central nervous system, and is inactivated by cellular uptake catalyzed by the glutamate transporters (or Excitatory Amino Acid Transporters, EAATs): EAAT1 (GLAST), (EAAT2 (GLT1), EAAT3 (EAAC), EAAT4 and EAAT5. The EAATs belong to Solute Carrier Family (slc) number 1 (for review and references, see, Danbolt, 2001).</span>
 
 
 
<span style="font-family:georgia,serif;">'''EAAT2 (slc1a2)&nbsp;'''is the quantitatively and functionally most important of the five EAAT subtypes in the mature brain. It accounts for more than 90&nbsp;% of the total glutamate uptake activity in the forebrain and is essential for normal brain function (Danbolt et al., 1992; Haugeto et al., 1996; Tanaka et al., 1997). EAAT2 protein is expressed in astrocytes in the normal and mature nervous system (Levy et al., 1993; Chaudhry et al., 1995; Lehre et al., 1995).</span>
 
 
 
<span style="font-family:georgia,serif;">Although it has been clear that EAAT2 protein is expressed in neurons in the normal and mature brain, it has been equally clear that EAAT2 mRNA is present in both neurons and astroglia (Torp et al., 1994, 1997; Berger and Hediger, 1998). It now turns out that EAAT2 protein is expressed in synaptic terminals, but at 10 times lower densities than in astroglia, and that the glutamate uptake into terminals is fully dependent on the EAAT2 gene (Furness et al. 2008).</span>
 
 
 
<span style="font-family:georgia,serif;">EAAT2 is variably spliced in many different ways and is found with alternative N-termini or C-termini, as well as with other modifications (for references see: Meyer et al., 1999; Danbolt, 2001). Three C-terminal variants of EAAT2 exist:</span>
 
 
 
*<span style="font-family:georgia,serif;">GLT1a (Pines et al., 1992)</span>
 
*<span style="font-family:georgia,serif;">GLT1b (Utsunomiya-Tate et al., 1997)</span>
 
*<span style="font-family:georgia,serif;">GLT1c (Rauen et al., 2004) &nbsp;</span>
 
 
 
<span style="font-family:georgia,serif;">&nbsp;</span>
 
 
 
<span style="font-family:georgia,serif;">The major neuronal mRNA isoform is GLT1a (Berger et al., 2005) and GLT1a is the only form found in terminals (Furness et al. 2008; Holmseth et al., 2009). The question of whether GLT1b is present in neurons or not has been controversial (for references and discussion see: Holmseth et al., 2009).</span>
 
 
 
 
 
 
 
<span style="font-family:georgia,serif;">'''The repository contains now two series of sections:'''</span>
 
 
 
*<span style="font-family:georgia,serif;">'''NM01:&nbsp;'''Mouse cryo-sections processed according to Procedure #1 (see Experimental procedures) with detergent (to maximize tissue penetation). This reveal regional differences in expression levels, but comes at the expense of cellular details.</span>
 
*<span style="font-family:georgia,serif;">'''R4372:&nbsp;'''Rat vibratome sections processed according to Procedure #2 (see Experimental procedures) as free-floating sections that have neither been frozen nor exposed to detergents. This procedure is best for visualizing cellular details.</span>
 
 
 
<span style="font-family:georgia,serif;">&nbsp;For more information, see: [http://www.neurotransporter.org/ http://www.neurotransporter.org/]</span><br/><br/>
 
 
 
== <span style="font-family:georgia,serif;">Experimental procedures</span> ==
 
 
 
<span style="font-family:georgia,serif;">For methodological details, see Holmseth and coworkers (2009). Animals were perfusion fixed with 4&nbsp;% formaldehyde and 0.2&nbsp;% glutaraldehyde in 0.1 M sodium phosphate buffer.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Procedure 1:&nbsp;'''Sections were cut from frozen tissue and processed with Triton X-100. Free floating sections (40 μm thick) were treated with 1M ethanolamine–HCl (pH 7.4), blocked with 10% newborn calf serum TBS (300 mM NaCl and 100 mM Tris–HCl pH 7.4) with 0.25% Triton X-100, and incubated overnight with primary antibodies diluted in blocking solution, followed by biotinylated secondary antibodies also diluted in blocking solution and developed with the biotin–streptavidin–peroxidase system and diaminobenzidine as described (Danbolt et al., 1998). The GLT1a antibody (Ab#355) was used at 0.06 μg/ml and the GLT1b antibody (Ab#357) at 0.08 μg/ml.&nbsp;</span>
 
 
 
<span style="font-family:georgia,serif;">'''Procedure 2:'''&nbsp;Sections were cut on a Vibratome and the tissue was not frozen. Free floating sections (40 μm thick) were treated with 1M ethanolamine–HCl (pH 7.4), blocked with 10% newborn calf serum TBS (300 mM NaCl and 100 mM Tris–HCl pH 7.4), and incubated overnight with primary antibodies diluted in blocking solution, followed by biotinylated secondary antibodies also diluted in blocking solution and developed with the biotin–streptavidin–peroxidase system and diaminobenzidine as described (Danbolt et al., 1998). The GLT1a antibody (Ab#355) was used at 0.3 μg/ml and the GLT1b antibody (Ab#357) at 3 μg/ml.</span>
 
 
 
<span style="font-family:georgia,serif;">&nbsp;</span>
 
 
 
=== <span style="font-family:georgia,serif;">General histochemistry</span> ===
 
 
 
<span style="font-family:georgia,serif;">Neighboring sections were counterstained with a standard thionine stain or with a combined stain for myelin (according to Woelche, 1942) and cytoarchitecture (standard Cresyl Violet counterstain) &nbsp;</span>
 
 
 
<span style="font-family:georgia,serif;">&nbsp;</span>
 
 
 
=== <span style="font-family:georgia,serif;">Atlas coordinate values</span> ===
 
 
 
<span style="font-family:georgia,serif;">For all sections, Bregma-related stereotaxic coordinates (“Bregma” in image repository) were found by anchoring selected sections to atlas diagrams using multiple anatomical landmarks. For the remaining sections, coordinates were interpolated from serial number and section thickness. Nearest matching atlas diagrams (“Atlas bregma” and corresponding “Atlas interaural” in image repository) were determined from closest matching bregma values in Franklin and Paxinos (2007, mouse brain atlas) and Paxinos and Watson (2008, rat brain atlas), respectively. &nbsp;</span>
 
 
 
<span style="font-family:georgia,serif;"><br/></span>
 
  
 
== <span style="font-family:georgia,serif;">Access image repository</span> ==
 
== <span style="font-family:georgia,serif;">Access image repository</span> ==
  
<span style="font-family:georgia,serif;">The present &nbsp;viewing tool allows the user to navigate within and across pairs of coronal or sagittal section images obtained from normal mice and rats.&nbsp;The EAAT atlas project is currently exploring different approaches for viewing of microscopic images via the web. The viewing tool is used for rapid inspection of large series of sections with images of higher resolution.&nbsp;</span>
+
The virtual microscopy viewer allows interactive zooming and panning. Original images are available for download via separate link.
  
<span style="font-family:georgia,serif;">Re-use of data from this repository is allowed provided that reference is given to the following publication:</span>
+
'''Re-use of data from this repository is allowed provided that reference is given to the following publication:''' Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG, Danbolt NC (2009) The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162:1055-71;<span style="font-family:georgia,serif;"><span style="font-size: 11.960000038147px; line-height: 18.3944797515869px; text-indent: -35px;">&nbsp;doi:</span>[http://dx.doi.org/10.1016/j.neuroscience.2009.03.048 10.1016/j.neuroscience.2009.03.048]</span> 
  
<span style="font-family:georgia,serif;"><span style="font-size: 11.960000038147px; line-height: 18.3944797515869px; text-indent: -35px;">Holmseth, Silvia; Scott, Heather A; Real, Katia; Lehre, Knut Petter Dæhlin; Leergaard, Trygve Brauns; Bjaalie, Jan G. & Danbolt, Niels Christian&nbsp;(2009).&nbsp;The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation.&nbsp;</span>''Neuroscience''<span style="font-size: 11.960000038147px; line-height: 18.3944797515869px; text-indent: -35px;">. &nbsp;ISSN&nbsp;0306-4522.&nbsp;</span>''&nbsp;162''<span style="font-size: 11.960000038147px; line-height: 18.3944797515869px; text-indent: -35px;">(4),&nbsp;s&nbsp;1055-&nbsp;1071 .&nbsp;doi:</span>[http://dx.doi.org/10.1016/j.neuroscience.2009.03.048 10.1016/j.neuroscience.2009.03.048]</span>
+
{| class="wikitable"
 +
!Case #
 +
!Species
 +
!Orientation
 +
!Staining
 +
!Image repository
 +
!Download
 +
|-
 +
|NM01
 +
|Mouse
 +
|Coronal
 +
|GLT1a
 +
|[http://cmbn-navigator.uio.no/navigator/filmstrip_viewer.html?publicOnly=true&entityType=block&entityId=2568&selectIndex=9&metadataKeyName=Bregma%20Level# Filmstrip viewer]
 +
|[http://cmbn-navigator.uio.no/navigator/feeder/all_originals/?id=2568 Tiffs]
 +
|-
 +
|NM01
 +
|Mouse
 +
|Coronal
 +
|GLT1b
 +
|[http://cmbn-navigator.uio.no/navigator/filmstrip_viewer.html?publicOnly=true&entityType=block&entityId=2567&selectIndex=9&metadataKeyName=Bregma%20Level# Filmstrip viewer]
 +
|[http://cmbn-navigator.uio.no/navigator/feeder/all_originals/?id=2567 Tiffs]
 +
|-
 +
|NM01
 +
|Mouse
 +
|Coronal
 +
|Myelin
 +
|[http://cmbn-navigator.uio.no/navigator/filmstrip_viewer.html?publicOnly=true&entityType=block&entityId=2565&selectIndex=12&metadataKeyName=Bregma%20Level# Filmstrip viewer]
 +
|[http://cmbn-navigator.uio.no/navigator/feeder/all_originals/?id=2565 Tiffs]
 +
|-
 +
|NM01
 +
|Mouse
 +
|Coronal
 +
|Thionin
 +
|[http://cmbn-navigator.uio.no/navigator/filmstrip_viewer.html?publicOnly=true&entityType=block&entityId=2566&selectIndex=11&metadataKeyName=Bregma%20Level# Filmstrip viewer]
 +
|[http://cmbn-navigator.uio.no/navigator/feeder/all_originals/?id=2566 Tiffs]
 +
|-
 +
|R4372
 +
|Rat
 +
|Sagittal
 +
|GLT1a
 +
|[http://cmbn-navigator.uio.no/navigator/filmstrip_viewer.html?publicOnly=true&entityType=block&entityId=2561&selectIndex=6&metadataKeyName=Bregma%20Level# Filmstrip viewer]
 +
|[http://cmbn-navigator.uio.no/navigator/feeder/all_originals/?id=2561 Tiffs]
 +
|-
 +
|R4372
 +
|Rat
 +
|Sagittal
 +
|GLT1b
 +
|[http://cmbn-navigator.uio.no/navigator/filmstrip_viewer.html?publicOnly=true&entityType=block&entityId=2563&selectIndex=5&metadataKeyName=Bregma%20Level# Filmstrip viewer]
 +
|[http://cmbn-navigator.uio.no/navigator/feeder/all_originals/?id=2563 Tiffs]
 +
|-
 +
|R4372
 +
|Rat
 +
|Sagittal
 +
|Thionin
 +
|[http://cmbn-navigator.uio.no/navigator/filmstrip_viewer.html?publicOnly=true&entityType=block&entityId=2562&selectIndex=4&metadataKeyName=Bregma%20Level# Filmstrip viewer]
 +
|[http://cmbn-navigator.uio.no/navigator/feeder/all_originals/?id=2562 Tiffs]
 +
|}
 +
== <span style="font-family:georgia,serif;">Experimental procedures in brief</span> ==
  
 +
Adult animals (C57bl6 mouse, Wistar rat) were transcardially perfused with 4 % formaldehyde and 0.2 % glutaraldehyde.
  
 +
The mouse brain was cut coronally at 40 μm on a freezing microtome (mouse). Free floating sections were treated with 1M ethanolamine–HCl (pH 7.4), blocked with 10% newborn calf serum TBS (300 mM NaCl and 100 mM Tris–HCl pH 7.4) with 0.25% Triton X-100, and incubated overnight with primary antibodies diluted in blocking solution, followed by biotinylated secondary antibodies also diluted in blocking solution and developed with the biotin–streptavidin–peroxidase system and diaminobenzidine. The GLT1a antibody (Ab#355) was used at 0.06 μg/ml and the GLT1b antibody (Ab#357) at 0.08 μg/ml. 
  
{| border="1" width="100%" style="font-family: Verdana, Arial, Helvetica, sans-serif;"
+
The rat brain was cut sagitally at 40 μm on a vibratome at room temperature. Free floating sections were treated with 1M ethanolamine–HCl (pH 7.4), blocked with 10% newborn calf serum TBS (300 mM NaCl and 100 mM Tris–HCl pH 7.4), and incubated overnight with primary antibodies diluted in blocking solution, followed by biotinylated secondary antibodies also diluted in blocking solution and developed with the biotin–streptavidin–peroxidase system and diaminobenzidine as described. The GLT1a antibody (Ab#355) was used at 0.3 μg/ml and the GLT1b antibody (Ab#357) at 3 μg/ml.
|- style="color: rgb(0, 0, 0);"
 
! <span style="font-family:georgia,serif;">Name</span>
 
! <span style="font-family:georgia,serif;">Species</span>
 
! <span style="font-family:georgia,serif;">CuttingDirection</span>
 
! <span style="font-family:georgia,serif;">BlckDate</span>
 
! <span style="font-family:georgia,serif;">Comments</span>
 
|- style="color: rgb(0, 0, 0);"
 
| <span style="font-family:georgia,serif;">NM01&nbsp;</span>
 
| <span style="font-family:georgia,serif;">MOUSE&nbsp;</span>
 
| <span style="font-family:georgia,serif;">CORONAL&nbsp;</span>
 
| <span style="font-family:georgia,serif;">2006-07-07&nbsp;</span>
 
| <span style="font-family:georgia,serif;">GLT1a, GLT1b, thionin, myelin&nbsp;</span>
 
|- style="color: rgb(0, 0, 0);"
 
| <span style="font-family:georgia,serif;">R4372&nbsp;</span>
 
| <span style="font-family:georgia,serif;">RAT&nbsp;</span>
 
| <span style="font-family:georgia,serif;">SAGITTAL&nbsp;</span>
 
| <span style="font-family:georgia,serif;">2009-01-07&nbsp;</span>
 
| <span style="font-family:georgia,serif;">thionin,GLT1a,GLT1b, Right hemisphere&nbsp;</span>
 
|}
 
  
<br/><span style="font-family:georgia,serif;">To view the high resolution images, choose from the table above.</span>
+
Neighboring sections were counterstained with a standard thionine stain or with a combined stain for myelin (according to Woelche, 1942) and cytoarchitecture (standard Cresyl Violet counterstain). 
  
<span style="font-family:georgia,serif;"><gallery mode="packed-hover" heights="120">
+
Bregma levels were determined using a standard stereotaxic atlas of the mouse (Franklin and Paxinos, The mouse brain in stereotaxic coordinates, Elsevier, 2001) or rat (Paxinos and Watson, The rat brain in stereotaxic coordinates, Elsevier 2008) brain. For further details, see Holmseth et al. (Neuroscience 162:1055-71, 2009) and http://www.neurotransporter.org/<span style="font-family:georgia,serif;">
Image examples:
 
Glt slide36 thumb.jpg|alt=slide36_GLT1|R4372s036_GLT1A
 
Glt slide37 thumb.jpg|alt=slide37_GLT1|R4372s037_GLT1B
 
Glt slide46 thumb.jpg|alt=slide46_GLT1|R4372s046_GLT1A
 
Glt slide47 thumb.jpg|alt=slide47_GLT1|R4372s047_GLT1B
 
</gallery></span>
 
  
 
== <span style="font-family:georgia,serif;">Contributing laboratories</span> ==
 
== <span style="font-family:georgia,serif;">Contributing laboratories</span> ==
  
<span style="font-family:georgia,serif;">The Neurotransporter Group - Knut Petter Lehre, Niels Chr. Danbolt<br/>Centre for Molecular Biology and Neuroscience &<br/>Institute of Basic Medical Sciences - Anatomy<br/>University of Oslo<br/>P.O. Box 1105 Blindern<br/>N - 0317 Oslo<br/>Norway<br/>[http://www.neurotransporter.org/ http://www.neurotransporter.org]<br/>[http://www.cmbn.no/ http://www.cmbn.no]</span>
+
'''The Neuro Transporter Group''' (http://www.neurotransporter.org), Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, Department of Anatomy, University of Oslo, P.O. Box 1105 Blindern, N - 0317 Oslo, Norway: Experimental work, immunohistochemistry. People: Silvia Holmseth, Henriette Danbolt, Knut P. Lehre, Niels C. Danbolt
 
 
<span style="font-family:georgia,serif;"><br/></span>
 
 
 
<span style="font-family:georgia,serif;">Neural Systems and Graphics Computing Laboratory - Trygve B. Leergaard, Jan G. Bjaalie<br/>Centre for Molecular Biology and Neuroscience &<br/>Institute of Basic Medical Sciences - Anatomy<br/>University of Oslo<br/>P.O. Box 1105 Blindern<br/>N - 0317 Oslo<br/>Norway<br/>[http://www.nesys.uio.no/ http://www.nesys.uio.no]<br/>[http://www.rbwb.org/ http://www.rbwb.org]</span>
 
 
 
<span style="font-family:georgia,serif;"><br/></span>
 
 
 
== <span style="font-family:georgia,serif;">Credits</span> ==
 
 
 
<span style="font-family:georgia,serif;">'''Histology'''<br/>Anna Torbjørg Bore<br/>Saurabh Jain</span>
 
 
 
 
 
 
 
<span style="font-family:georgia,serif;">'''Immunohistochemistry'''<br/>Silvia Holmseth<br/>Henriette Danbolt<br/>Knut Petter Lehre<br/>Niels Christian Danbolt</span>
 
 
 
 
 
 
 
<span style="font-family:georgia,serif;">'''NT-atlas web-application development team:'''<br/>Jan Olav Kjøde<br/>Ivar Andre Moene&nbsp;<br/>Dmitri Darine&nbsp;<br/>Saurabh Jain<br/>Trygve B. Leergaard<br/>Jan G. Bjaalie</span><br/><br/>
 
 
 
== <span style="font-family:georgia,serif;">References</span> ==
 
 
 
<span style="font-family:georgia,serif;">'''Berger UV, Hediger MA (1998)'''<br/>''Comparative analysis of glutamate transporter expression in rat brain using differential double in situ hybridization.''<br/>Anat Embryol (Berl) 198:13-30.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Berger UV, Desilva TM, Chen WZ, Rosenberg PA (2005)&nbsp;'''<br/>''Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization.''<br/>J Comp Neurol 492:78- 89.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Chaudhry FA, Lehre KP, Campagne MV, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995)'''<br/>''Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry.''<br/>Neuron 15:711-720</span>
 
 
 
<span style="font-family:georgia,serif;">'''Danbolt NC (2001)'''<br/>''Glutamate uptake.''<br/>Prog Neurobiol 65: 1-105.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Danbolt NC, Storm-Mathisen J, Kanner BI (1992)'''<br/>''An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes.''<br/>Neuroscience 51:295-310.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Danbolt NC, Lehre KP, Dehnes Y, Chaudhry FA, Levy LM (1998)'''<br/>''Localization of transporters using transporter-specific antibodies.''<br/>Methods Enzymol 296:388-407.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Franklin K, Paxinos G (2007)'''<br/>''The mouse brain in stereotaxic coordinates (San Diego, Elsevier Academic Press)''</span>
 
 
 
<span style="font-family:georgia,serif;">'''Furness D, Dehnes Y, Akhtar A, Rossi D, Hamann M, Grutle N, Gundersen V, Holmseth S, Lehre K, Ullensvang K, Wojewodzic M, Zhou Y, Attwell D, Danbolt N (2008)&nbsp;'''<br/>''A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: New insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2).''<br/>Neuroscience 157:80-94.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG and Danbolt NC (2009)&nbsp;'''<br/>''The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggests differential regulation.''<br/>Neuroscience, 2009; doi:10.1016/j.neuroscience.2009.03.048</span>
 
 
 
<span style="font-family:georgia,serif;">'''Haugeto Ø, Ullensvang K, Levy LM, Chaudhry FA, Honoré T, Nielsen M, Lehre KP, Danbolt NC (1996)'''<br/>''Brain glutamate transporter proteins form homomultimers.''<br/>J Biol Chem 271:27715-27722.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995)'''<br/>''Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations.''<br/>J Neurosci 15:1835-1853.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Levy LM, Lehre KP, Rolstad B, Danbolt NC (1993)'''<br/>''A monoclonal antibody raised against an [Na+ - K+]coupled L- glutamate transporter purified from rat brain confirms glial cell localization.''<br/>FEBS Lett 317:79-84.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Meyer T, Fromm A, Münch C, Schwalenstöcker B, Fray AE, Ince PG, Stamm S, Gron G, Ludolph AC, Shaw PJ (1999)'''<br/>''The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals.''<br/>J Neurol Sci 170:45-50.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Paxinos G, Watson C (2008)'''<br/>''The rat brain in stereotaxic coordinates (San Diego, Elsevier Academic Press)''</span>
 
 
 
<span style="font-family:georgia,serif;">'''Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992)'''<br/>''Cloning and expression of a rat brain L-glutamate transporter.''<br/>Nature 360:464-467.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Rauen T, Wiessner M, Sullivan R, Lee A, Pow DV (2004)'''<br/>''A new GLT1 splice variant: cloning and immunolocalization of GLT1c in the mammalian retina and brain.&nbsp;''<br/>Neurochem Int 45:1095-1106.</span>
 
 
 
<span style="font-family:georgia,serif;">'''Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Hori S, Takimoto M, Wada K (1997)'''<br/>''Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT- 1.''<br/>Science 276:1699-1702.</span>
 
  
<span style="font-family:georgia,serif;">'''Torp R, Danbolt NC, Babaie E, Bjørås M, Seeberg E, Storm-Mathisen J, Ottersen OP (1994)'''<br/>''Differential expression of two glial glutamate transporters in the rat brain: an in situ hybridization study.''<br/>Eur J Neurosci 6:936-942.</span>
+
'''Neural Systems Laboratory''' (http://www.nesys.uio.no), Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, Department of Anatomy, University of Oslo, P.O. Box 1105 Blindern, N - 0317 Oslo, Norway: Histological processing, image acquisition, atlas repository. People: Jan O. Kjøde, Ivar A. Moene, Dmitri Darine, Saurabh Jain, Anna T. Bore, Trygve B. Leergaard, Jan G. Bjaalie
  
<span style="font-family:georgia,serif;">'''Torp R, Hoover F, Danbolt NC, Storm-Mathisen J, Ottersen OP (1997)'''<br/>''Differential distribution of the glutamate transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: an in situ hybridization analysis.''<br/>Anat Embryol (Berl) 195:317- 326.</span>
+
== Funded by: ==
 +
* The neuroinformatics components of this resource have been funded by the Human Brain Project through the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no. 604102 (HBP)
  
<span style="font-family:georgia,serif;">'''Utsunomiya-Tate N, Endou H, Kanai Y (1997)'''<br/>''Tissue specific variants of glutamate transporter GLT-1.''<br/>FEBS Lett 416:312-316.</span>
+
== <span style="font-family:georgia,serif;">Contact</span> ==
  
<span style="font-family:georgia,serif;">'''Woelche M (1942)'''<br/>''Eine neue Methode der Markscheidenfarbung.''<br/>Psychol. Neurol. 51:199-202.</span>
+
j.g.bjaalie@medisin.uio.no

Revision as of 21:20, 17 June 2016

About

Glutamate is the major excitatory transmitter in the central nervous system (Danbolt, Prog. Neurobiol. 65:1-105, 2001), and it is inactivated by cellular uptake, mostly catalyzed by the glutamate transporters GLT1 (slc1a2, excitatory amino acid transporter [EAAT2]) subtype expressed at high levels in brain astrocytes and at lower levels in neurons. Three C-terminal variants of EAAT2 exist: GLT1a (Pines et al., Nature 360:464-467, 1992), GLT1b (Utsunomiya-Tate et al., FEBS Lett 416:312-326,1997), and GLT1c (Rauen et al., Neurochem. Int. 45:1095-1106, 2004). The Neurotransporter Atlas: GLT1 is an interactive resource providing access to a comprehensive collection of microscopic images showing the brain-wide distribution of GLT1 in the mouse and rat brain, visualized by immunohistochemistry using antibodies against GLT1a and GLT1b. To facilitate identification of anatomical location adjacent section were stained to reveal cyto- and myeloarchitecture. 

Access image repository

The virtual microscopy viewer allows interactive zooming and panning. Original images are available for download via separate link.

Re-use of data from this repository is allowed provided that reference is given to the following publication: Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG, Danbolt NC (2009) The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162:1055-71; doi:10.1016/j.neuroscience.2009.03.048 

Case # Species Orientation Staining Image repository Download
NM01 Mouse Coronal GLT1a Filmstrip viewer Tiffs
NM01 Mouse Coronal GLT1b Filmstrip viewer Tiffs
NM01 Mouse Coronal Myelin Filmstrip viewer Tiffs
NM01 Mouse Coronal Thionin Filmstrip viewer Tiffs
R4372 Rat Sagittal GLT1a Filmstrip viewer Tiffs
R4372 Rat Sagittal GLT1b Filmstrip viewer Tiffs
R4372 Rat Sagittal Thionin Filmstrip viewer Tiffs

Experimental procedures in brief

Adult animals (C57bl6 mouse, Wistar rat) were transcardially perfused with 4 % formaldehyde and 0.2 % glutaraldehyde.

The mouse brain was cut coronally at 40 μm on a freezing microtome (mouse). Free floating sections were treated with 1M ethanolamine–HCl (pH 7.4), blocked with 10% newborn calf serum TBS (300 mM NaCl and 100 mM Tris–HCl pH 7.4) with 0.25% Triton X-100, and incubated overnight with primary antibodies diluted in blocking solution, followed by biotinylated secondary antibodies also diluted in blocking solution and developed with the biotin–streptavidin–peroxidase system and diaminobenzidine. The GLT1a antibody (Ab#355) was used at 0.06 μg/ml and the GLT1b antibody (Ab#357) at 0.08 μg/ml. 

The rat brain was cut sagitally at 40 μm on a vibratome at room temperature. Free floating sections were treated with 1M ethanolamine–HCl (pH 7.4), blocked with 10% newborn calf serum TBS (300 mM NaCl and 100 mM Tris–HCl pH 7.4), and incubated overnight with primary antibodies diluted in blocking solution, followed by biotinylated secondary antibodies also diluted in blocking solution and developed with the biotin–streptavidin–peroxidase system and diaminobenzidine as described. The GLT1a antibody (Ab#355) was used at 0.3 μg/ml and the GLT1b antibody (Ab#357) at 3 μg/ml.

Neighboring sections were counterstained with a standard thionine stain or with a combined stain for myelin (according to Woelche, 1942) and cytoarchitecture (standard Cresyl Violet counterstain). 

Bregma levels were determined using a standard stereotaxic atlas of the mouse (Franklin and Paxinos, The mouse brain in stereotaxic coordinates, Elsevier, 2001) or rat (Paxinos and Watson, The rat brain in stereotaxic coordinates, Elsevier 2008) brain. For further details, see Holmseth et al. (Neuroscience 162:1055-71, 2009) and http://www.neurotransporter.org/

Contributing laboratories

The Neuro Transporter Group (http://www.neurotransporter.org), Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, Department of Anatomy, University of Oslo, P.O. Box 1105 Blindern, N - 0317 Oslo, Norway: Experimental work, immunohistochemistry. People: Silvia Holmseth, Henriette Danbolt, Knut P. Lehre, Niels C. Danbolt

Neural Systems Laboratory (http://www.nesys.uio.no), Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, Department of Anatomy, University of Oslo, P.O. Box 1105 Blindern, N - 0317 Oslo, Norway: Histological processing, image acquisition, atlas repository. People: Jan O. Kjøde, Ivar A. Moene, Dmitri Darine, Saurabh Jain, Anna T. Bore, Trygve B. Leergaard, Jan G. Bjaalie

Funded by:

  • The neuroinformatics components of this resource have been funded by the Human Brain Project through the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no. 604102 (HBP)

Contact

j.g.bjaalie@medisin.uio.no